GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1998
    In:  Journal of Geophysical Research: Atmospheres Vol. 103, No. D7 ( 1998-04-20), p. 8389-8399
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 103, No. D7 ( 1998-04-20), p. 8389-8399
    Abstract: Total ozone measurements have been made at Arosa, Switzerland (47°N), from 1926 through the present day, forming the longest total ozone series in the world. The record has been recently homogenized. Ozone trends are calculated to be −(2.3±0.6)% per decade for annual means (larger losses are found in winter and spring, approximately −4% per decade for trends in January, February, and March) when a simple linear change from 1970 to 1996 is assumed. In addition, total ozone trends are calculated using multiple regression models involving combinations of explanatory variables for the 11‐year solar cycle, local meteorological conditions (the Mount Säntis high‐altitude temperature record), stratospheric aerosol loading from volcanoes, and stratospheric chlorine loading. When the terms for the solar cycle, the stratospheric aerosol loading and the high mountain temperature record were included, the annually averaged ozone trends were found to be −(1.9±0.6)% per decade. While a statistically significant relation is found between total ozone and indices of aerosol loadings of the stratosphere, the recent decrease in total ozone cannot be accounted for by the higher average aerosol content in the second half of the century. Finally, the decrease in ozone in the stratosphere is estimated to be approximately 30% larger than that found for total ozone, when a crude estimate of the increase in tropospheric ozone is included. The acceleration observed in total ozone trends between the 1970s and the 1980s over northern midlatitudes [e.g., Harris et al. , 1997] might be partially attributed to the larger increase in tropospheric ozone in the 1970s.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1998
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2001
    In:  Journal of Geophysical Research: Atmospheres Vol. 106, No. D19 ( 2001-10-16), p. 22685-22694
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 106, No. D19 ( 2001-10-16), p. 22685-22694
    Abstract: Long‐term changes in the vertical ozone distribution over Switzerland are examined for the period 1967–2000. A statistical trend analysis is performed accounting for chemical and dynamical variability. The tropopause pressure, the North Atlantic oscillation (NAO), the Arctic oscillation (AO), and the quasi‐biennial oscillation (QBO) are used as dynamical quantities. In addition, the solar effect and an ozone depletion factor (ODF), which describes the joint effect of stratospheric chlorine and aerosol loading, are included. A term is allowed for an unexplained linear trend. The various influences on ozone are estimated employing stepwise regression. Tropopause pressure and lower stratospheric ozone (10–19 km) variability are found to be strongly linked throughout the year. The NAO‐AO indices show a negative correlation with lower stratospheric ozone in winter‐spring. A positive correlation of NAO‐AO and ozone is found in the middle stratosphere (23–30 km) during late summer to early winter. There is a solar signal in the middle stratosphere which becomes strongly significant in summer. The QBO signal is prominent at the height of the ozone maximum in winter‐spring. The unexplained trends are much larger than the contributions of the ODF, suggesting that mechanisms other than midlatitude in situ chemistry are mostly responsible for the observed ozone loss. In the lowermost stratosphere (10–15 km), the observed ozone trends are found to be caused by dynamics. Above, the residual ozone trend (in percent) is independent of height and in the range of −2% to −5% per decade up to 30 km.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2001
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 113, No. D20 ( 2008-10-31)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2008
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 47, No. 15 ( 2020-08-16)
    Abstract: Isoprene concentrations were monitored for a whole growing season in a temperate forest in the United Kingdom before, during, and after the 2018 heatwave Isoprene abundances during the heatwave increased by up to 400%, and stress‐related sesquiterpenes were observed during the heatwave Higher temperatures in the heatwave cannot account for all the enhanced isoprene abundances, which correlate to drought stress
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...