GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2001
    In:  Journal of Geophysical Research: Oceans Vol. 106, No. C5 ( 2001-05-15), p. 9255-9275
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 106, No. C5 ( 2001-05-15), p. 9255-9275
    Abstract: Net fluxes of mass, heat, salt, nutrients, oxygen, and chlorophyll into a control volume within the southern California Current System (CCS) were computed from data collected on 55 cruises over a 14 year period (1984–1997). This analysis builds on an earlier work [ Roemmich , 1989] by using an additional 39 cruises over 10 years, allowing for reliable estimates of the temporal variability in the fluxes on seasonal and interannual timescales and a reduction in the corresponding error budgets. A close balance was found between geostrophic convergence and Ekman divergence for the 14 year, seasonal, and interannual cruise subsets using three different wind products. Wind data taken concomitantly with the hydrographic sampling provided the best balance and hence the best flux estimates. The southern CCS was found to be a region with higher evaporation over precipitation and net heat gain by the ocean from the atmosphere (86 W m −2 in the 14 year mean) in all seasons. Significant variability in both the Ekman and geostrophic transports and the net property fluxes was found to be related to low‐frequency (interpentadal and El Niño‐Southern Oscillation timescale) changes in the dominant wind and circulation patterns in the CCS. Variability in primary productivity, estimated from the derived nutrient fluxes, accompanied the environmental changes. Application of this model to the ongoing data collection will further reduce the error bars on the fluxes and will allow for continued monitoring of changes in the physical and biological structure of the southern CCS.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2001
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2000
    In:  Geophysical Research Letters Vol. 27, No. 16 ( 2000-08-15), p. 2565-2568
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 27, No. 16 ( 2000-08-15), p. 2565-2568
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2012
    In:  Journal of Geophysical Research: Oceans Vol. 117, No. C3 ( 2012-03), p. n/a-n/a
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 117, No. C3 ( 2012-03), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2012
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2022
    In:  Journal of Geophysical Research: Oceans Vol. 127, No. 5 ( 2022-05)
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 127, No. 5 ( 2022-05)
    Abstract: Finescale turbulence estimates in Drake Passage reveal higher internal wave activity north of the Polar Front than south Lee‐wave energy radiation estimated from bottom current meters is the largest in the Polar Front Zone Less than 10% of the lee‐wave energy radiation dissipates locally, regardless of the abyssal hill topography employed
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2022
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2015
    In:  Journal of Geophysical Research: Oceans Vol. 120, No. 12 ( 2015-12), p. 7919-7933
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 120, No. 12 ( 2015-12), p. 7919-7933
    Abstract: Topographic form stress balances 95% of Southern Ocean wind stress Shallow form stress in the top 3700 m balances most of the wind stress Approximately 40% of wind stress is balanced by form stress across land, 60% by submerged ridges
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2015
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2018
    In:  Journal of Geophysical Research: Oceans Vol. 123, No. 5 ( 2018-05), p. 3368-3385
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 123, No. 5 ( 2018-05), p. 3368-3385
    Abstract: We isolate interfacial form stress (IFS) by calculating zonal pressure gradients across isopycnal surfaces for the first time in a general circulation model IFS balances wind stress at the surface and balances topographic form stress at depth Zonal and time mean, standing eddy, and transient eddy IFS all play important roles in the total IFS field
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2018
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2009
    In:  Journal of Geophysical Research Vol. 114, No. C2 ( 2009-02-12)
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 114, No. C2 ( 2009-02-12)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2009
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1998
    In:  Journal of Geophysical Research: Oceans Vol. 103, No. C6 ( 1998-06-15), p. 13067-13083
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 103, No. C6 ( 1998-06-15), p. 13067-13083
    Abstract: Low‐pass‐filtered velocities obtained from World Ocean Circulation Experiment (WOCE) surface drifters deployed in the California Current off northern California during 1993–1995 have been compared with surface geostrophic velocity estimates made along subtracks of the TOPEX/POSEIDON altimeter and with moored acoustic Doppler current profiler (ADCP) data. To obtain absolute geostrophic velocities, a mean sea surface height (SSH) field was estimated using the mean drifter velocities and historical hydrographic data and was added to the altimetric SSH anomalies. The correlation between collocated drifter and altimetric velocities is 0.73, significant at the 95% level. The component of the drifter velocity which was uncorrelated with the altimetric velocity was correlated with the wind in the Ekman transport sense. Monthly averages of eddy kinetic energy (EKE), estimated using all drifter and altimeter data within the domain (124°–132°W, 33°–40.5°N), show energy levels for the drifters that are about 13% greater than those for the altimeter. Drifter, altimeter, and ADCP measurements all exhibit similar seasonal cycles in EKE, with the altimeter data reaching maximum values of about 0.03 m 2 s −2 in late summer/fall. Wavenumber spectra of the altimeter velocity indicate that the velocity fluctuations were dominated by features with wavelengths of 240–370 km, while the ADCP data suggest that the temporal scales of these fluctuations are at least several months. Between 36° and 40.5°N, the region of monthly maximum EKE migrates westward to about 128°W on a seasonal timescale. This region of maximum EKE coincides with the maximum zonal SSH gradient, with increased EKE associated with increased southward flow. A simple model shows that much of the seasonal cycle of the SSH anomalies can be produced by linear processes forced by the curl of the wind stress, although the model cannot explain the offshore movement of the front.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1998
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1997
    In:  Journal of Geophysical Research: Oceans Vol. 102, No. C6 ( 1997-06-15), p. 12727-12748
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 102, No. C6 ( 1997-06-15), p. 12727-12748
    Abstract: In this paper, we evaluate the temporal and horizontal resolution of geostrophic surface velocities calculated from TOPEX satellite altimeter heights. Moored velocities (from vector‐averaging current meters and an acoustic Doppler current profiler) at depths below the Ekman layer are used to estimate the temporal evolution and accuracy of altimeter geostrophic surface velocities at a point. Surface temperature gradients from satellite fields are used to determine the altimeter's horizontal resolution of features in the velocity field. The results indicate that the altimeter resolves horizontal scales of 50–80 km in the along‐track direction. The rms differences between the altimeter and current meters are 7–8 cm s −1 , much of which comes from small‐scale variability in the oceanic currents. We estimate the error in the altimeter velocities to have an rms magnitude of 3–5 cm s −1 or less. Uncertainties in the eddy momentum fluxes at crossovers are more difficult to evaluate and may be affected by aliasing of fluctuations with frequencies higher than the altimeter's Nyquist frequency of 0.05 cycles d −1 , as indicated by spectra from subsampled current meter data. The eddy statistics that are in best agreement are the velocity variances, eddy kinetic energy and the major axis of the variance ellipses. Spatial averaging of the current meter velocities produces greater agreement with all altimeter statistics and increases our confidence that the altimeter's momentum fluxes and the orientation of its variance ellipses (the statistics differing the most with single moorings) represent well the statistics of spatially averaged currents (scales of 50–100 km) in the ocean. Besides evaluating altimeter performance, the study reveals several properties of the circulation in the California Current System: (1) velocity components are not isotropic but are polarized, strongly so at some locations, (2) there are instances of strong and persistent small‐scale variability in the velocity, and (3) the energetic region of the California Current is isolated and surrounded by a region of lower energy starting 500–700 km offshore. This suggests that the source of the high eddy energy within 500 km of the coast is the seasonal jet that develops each spring and moves offshore to the central region of the California Current, rather than a deep‐ocean eddy field approaching the coast from farther offshore.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1997
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2016
    In:  Geophysical Research Letters Vol. 43, No. 21 ( 2016-11-16)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 43, No. 21 ( 2016-11-16)
    Abstract: Upper ocean submesoscale (here 10‐100 km) turbulence and inertia‐gravity waves undergo strong seasonal cycles that are out of phase Submesoscale turbulence dominates the horizontal velocity and sea surface height variability in late winter/early spring Submesoscale inertia‐gravity waves dominate the horizontal velocity and sea surface height variability in late summer/early fall
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2016
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...