GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2000
    In:  Journal of Geophysical Research: Atmospheres Vol. 105, No. D14 ( 2000-07-27), p. 17955-17969
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 105, No. D14 ( 2000-07-27), p. 17955-17969
    Abstract: Using a fine‐scale (10–20 km) nested regional modeling system, synoptic variations in climatological summertime low‐level wind fields over the Gulf of California and the southwestern United States are described. Under appropriate synoptic conditions, strong surge events can develop. These are characterized by low‐level southerly flow over the entire Gulf of California with southerly winds extending into Arizona, California, and southern Nevada. Vertically, these southerly winds are present through the bottom 1–2 km of the atmosphere. Southerly flow is persistent throughout the day with some local diurnal cycling over the foothills of the Sierra Madre Occidental and northwestern Mexico. Under nonsurge conditions the simulated low‐level winds have a significantly different geographic structure. Nighttime southerly flow is limited to the northeastern Gulf and small portions of southwestern Arizona. Flow over the central and southern Gulf is northerly with weak, variable winds over the foothills of the Sierra Madre Occidental. During the day, southerly winds are present over the central and northern Gulf of California, extending into southwestern Arizona; however, this southerly wind pattern does not support continuous flow from the mouth of the Gulf into northwestern Mexico. Instead, there is a westerly component associated with predominantly upslope flow over the foothills of the Sierra Madre Occidental and the Sonora Desert.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2001
    In:  Journal of Geophysical Research: Atmospheres Vol. 106, No. D4 ( 2001-02-27), p. 3401-3413
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 106, No. D4 ( 2001-02-27), p. 3401-3413
    Abstract: Using a fine‐scale nested regional modeling system, the diurnal forcing of summertime low‐level winds over the Gulf of California and northwestern Mexico is investigated. On diurnal timescales, simulated nocturnal low‐level jets develop over the northern portion of the Gulf, the foothills of the Sierra Madre Occidental, and parts of southern Arizona. The southerly component of the nocturnal jet is the result of a geostrophic balance involving the Coriolis force and a cross‐gulf pressure gradient force associated with nighttime slope cooling over the elevated Sierra Madre Occidental. Additionally, horizontal temperature gradients over the sloped orography produce vertical variations in this cross‐gulf pressure gradient force, generating the jet‐like vertical shear in wind components above the nocturnal boundary layer; frictional effects are responsible for producing shear in the wind profiles below the boundary layer. This balance is distinctly different from the inertial balance that is believed to be responsible for the low‐level jet over the Great Plains region of the United States. Daytime winds are part of a directly driven wind field forced by horizontal pressure gradients associated with slope heating (up the Sierra Madre Occidental) and sea‐land temperature gradients (north of the Gulf). During synoptically forced surge events, a similar diurnal cycle in low‐level flow is still present; however, the local thermal forcing appears to be superimposed upon the large‐scale synoptic forcing, resulting in weaker up‐slope flow during the day and stronger along‐slope flow at night.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2001
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 104, No. D16 ( 1999-08-27), p. 19443-19461
    Abstract: The first simulation experiment and output archives of the Project to Intercompare Regional Climate Simulations (PIRCS) is described. Initial results from simulations of the summer 1988 drought over the central United States indicate that limited‐area models forced by large‐scale information at the lateral boundaries reproduce bulk temporal and spatial characteristics of meteorological fields. In particular, the 500 hPa height field time average and temporal variability are generally well simulated by all participating models. Model simulations of precipitation episodes vary depending on the scale of the dynamical forcing. Organized synoptic‐scale precipitation systems are simulated deterministically in that precipitation occurs at close to the same time and location as observed (although amounts may vary from observations). Episodes of mesoscale and convective precipitation are represented in a more stochastic sense, with less precise agreement in temporal and spatial patterns. Simulated surface energy fluxes show broad similarity with the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) observations in their temporal evolution and time average diurnal cycle. Intermodel differences in midday Bowen ratio tend to be closely associated with precipitation differences. Differences in daily maximum temperatures also are linked to Bowen ratio differences, indicating strong local, surface influence on this field. Although some models have bias with respect to FIFE observations, all tend to reproduce the synoptic variability of observed daily maximum and minimum temperatures. Results also reveal the advantage of an intercomparison in exposing common tendencies of models despite their differences in convective and surface parameterizations and different methods of assimilating lateral boundary conditions.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1999
    In:  Journal of Geophysical Research: Atmospheres Vol. 104, No. D24 ( 1999-12-27), p. 31517-31532
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 104, No. D24 ( 1999-12-27), p. 31517-31532
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...