GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (3)
  • American Geophysical Union (AGU)  (1)
  • Cambridge Univ. Press  (1)
  • 1
    ISSN: 1573-515X
    Keywords: Atlantic ; ethylene ; methane ; sea-air exchange
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The vertical distributions of ethylene and methane in the upper water column of the subtropical Atlantic were measured along a transect from Madeira to the Caribbean and compared with temperature, salinity, oxygen, nutrients, chlorophyll-a, and dissolved organic carbon (DOC). Methane concentrations between 41.6 and 60.7 nL L-1 were found in the upper 20 m of the water column giving a calculated average flux of methane into the atmosphere of 0.82 μg m-2 h-1. Methane profiles reveal several distinct maxima in the upper 500 m of the water column and short-time variations which are presumably partly related to the vertical migration of zooplankton. Ethylene concentrations in near surface waters varied in the range of 1.8 to 8.2 nL L-1. Calculated flux rates for ethylene into the atmosphere were in the range of 0.41 to 1.35 μg m-2 h-1 with a mean of 0.83 μg m-2 h-1. Maximum concentrations of up to 39.2 nL L-1 were detected directly below the pycnocline in the western Atlantic. The vertical distributions of ethylene generally showed one maximum at the pycnocline (about 100 m depth) where elevated concentrations of chlorophyll-a, dissolved oxygen, and nutrients were also found; no ethylene was detected below 270 m depth. This suggests that ethylene release is mainly related to one, probably phytoplankton associated, source, while for methane, enhanced net production occurs at various depth horizons. For surface waters, a simple correlation between ethylene and chlorophyll-a or DOC concentrations could not be observed. No considerable diurnal variation was observed for the distribution and concentration of ethylene in the upper water column.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: Atlantic ; ethylene ; methane ; sea-air exchange
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The vertical distributions of ethylene and methane in the upper water column of the subtropical Atlantic were measured along a transect from Madeira to the Caribbean and compared with temperature, salinity, oxygen, nutrients, chlorophyll-a, and dissolved organic carbon (DOC). Methane concentrations between 41.6 and 60.7 nL L−1 were found in the upper 20 m of the water column giving a calculated average flux of methane into the atmosphere of 0.82μg m−2 h−1. Methane profiles reveal several distinct maxima in the upper 500 m of the water column and short-time variations which are presumably partly related to the vertical migration of Zooplankton. Ethylene concentrations in near surface waters varied in the range of 1.8 to 8.2 nL L−1. Calculated flux rates for ethylene into the atmosphere were in the range of 0.41 to 1.35μg m−2 h−1 with a mean of 0.83μg m−2h−2. Maximum concentrations of up to 39.2 nL L−2 were detected directly below the pycnocline in the western Atlantic. The vertical distributions of ethylene generally showed one maximum at the pycnocline (about 100 m depth) where elevated concentrations of chlorophyll-a, dissolved oxygen, and nutrients were also found; no ethylene was detected below 270 m depth. This suggests that ethylene release is mainly related to one, probably phytoplankton associated, source, while for methane, enhanced net production occurs at various depth horizons. For surface waters, a simple correlation between ethylene and chlorophyll-a or DOC concentrations could not be observed. No considerable diurnal variation was observed for the distribution and concentration of ethylene in the upper water column.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-04
    Description: Compound-specific radiocarbon (14C) dating often requires working with small samples of 〈 100 µg carbon (µgC). This makes the radiocarbon dates of biomarker compounds very sensitive to biases caused by extraneous carbon of unknown composition, a procedural blank, which is introduced to the samples during the steps necessary to prepare a sample for radiocarbon analysis by accelerator mass spectrometry (i.e., isolating single compounds from a heterogeneous mixture, combustion, gas purification and graphitization). Reporting accurate radiocarbon dates thus requires a correction for the procedural blank. We present our approach to assess the fraction modern carbon (F14C) and the mass of the procedural blanks introduced during the preparation procedures of lipid biomarkers (i.e. n-alkanoic acids) and lignin phenols. We isolated differently sized aliquots (6–151 µgC) of n-alkanoic acids and lignin phenols obtained from standard materials with known F14C values. Each compound class was extracted from two standard materials (one fossil, one modern) and purified using the same procedures as for natural samples of unknown F14C. There is an inverse linear relationship between the measured F14C values of the processed aliquots and their mass, which suggests constant contamination during processing of individual samples. We use Bayesian methods to fit linear regression lines between F14C and 1/mass for the fossil and modern standards. The intersection points of these lines are used to infer F14Cblank and mblank and their associated uncertainties. We estimate 4.88 ± 0.69 μgC of procedural blank with F14C of 0.714 ± 0.077 for n-alkanoic acids, and 0.90 ± 0.23 μgC of procedural blank with F14C of 0.813 ± 0.155 for lignin phenols. These F14Cblank and mblank can be used to correct AMS results of lipid and lignin samples by isotopic mass balance. This method may serve as a standardized procedure for blank assessment in small-scale radiocarbon analysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-15
    Description: Surface water characteristics of the Beaufort Sea have global climate implications during the last deglaciation and the Holocene, as (1) sea ice is a critical component of the climate system and (2) Laurentide Ice Sheet meltwater discharges via the Mackenzie River to the Arctic Ocean and further, to its outflow near the deep-water source area of the Atlantic Meridional Overturning Circulation. Here we present high-resolution biomarker records from the southern Beaufort Sea. Multi-proxy biomarker reconstruction suggests that the southern Beaufort Sea was nearly ice-free during the deglacial to Holocene transition, and a seasonal sea-ice cover developed during the mid-late Holocene. Superimposed on the long-term change, two events of high sediment flux were documented at ca. 13 and 11 kyr BP, respectively. The first event can be attributed to the Younger Dryas flood and the second event is likely related to a second flood and/or coastal erosion.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 128(10), ISSN: 2169-8953
    Publication Date: 2024-04-11
    Description: Human activities have increasingly changed terrestrial particulate organic carbon (POC) export to the coastal ocean since the Industrial Age (19th century). However, the influence of human perturbations on the composition and flux of terrestrial biospheric and petrogenic POC sub-pools remains poorly constrained. Here, we examined 13C and 14C compositions of bulk POC and source-specific biomarkers (fatty acids, FA) from two nearshore sediment cores collected in the Pearl River-derived mudbelt, to determine the impacts of human perturbations of the Pearl River watershed on the burial of terrestrial POC in the coastal ocean over the last century. Our results show that although agricultural practices and deforestation during the 1930s–1950s increased C4 plant coverage in the watershed, the export fluxes of terrestrial biospheric and petrogenic POC remained rather unchanged; however, added perturbations since 1974, including increasing coal consumption, embankment and dam constructions caused massive export of both petrogenic POC and relatively fresh terrestrial biospheric POC from the river delta. Our data reveal that human activities substantially enhance the transfer of petrogenic POC and fresh biospheric POC to the coastal ocean after ca. 1974, with the latter process acting as an important sink for anthropogenic CO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...