GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Oxfordjournals
    In:  EPIC3Journal of Plankton Research, Oxfordjournals, 38(6), pp. 1420-1432, ISSN: 0142-7873
    Publication Date: 2016-11-30
    Description: This study aimed at understanding how life-cycle strategies of the primarily herbivorous Pseudocalanus minutus and the omnivorous Oithona similis are reflected by their lipid carbon turnover capacities. The copepods were collected in Billefjorden, Svalbard, and fed with 13C labeled flagellates and diatoms during 3 weeks. Fatty acid (FA) and fatty alcohol compositions were determined by gas chromatography, 13C incorporation was monitored using isotope ratio mass spectrometry. Maximum lipid turnover occurred in P. minutus, which exchanged 54.4% of total lipid, whereas 9.4% were exchanged in O. similis. In P. minutus, the diatom markers 16:1(n-7), 16:2(n-4) and 16:3(n-4) were almost completely renewed from the diet within 21 days, while 15% of the flagellate markers 18:2(n-6), 18:3(n-3) and 18:4(n-3) were exchanged. In O. similis, 15% of both flagellate and diatom markers were renewed. P. minutus exhibited typical physiological adaptations of herbivorous copepod species, with a very high lipid turnover rate and the ability to integrate FAs more rapidly from diatoms than from flagellates. O. similis depended much less on lipid reserves and had a lower lipid turnover rate, but was able to ingest and/or assimilate lipids with the same intensity from various food sources, to sustain shorter periods of food shortage.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 127(10), ISSN: 2169-8953
    Publication Date: 2023-06-21
    Description: Zooplankton plays a notable role in ocean biogeochemical cycles. However, it is often simulated as one generic group and top closure term in ocean biogeochemical models. This study presents the description of three zooplankton functional types (zPFTs, micro-, meso- and macrozooplankton) in the ocean biogeochemical model FESOM-REcoM. In the presented model, microzooplankton is a fast-growing herbivore group, mesozooplankton is another major consumer of phytoplankton, and macrozooplankton is a slow-growing group with a low temperature optimum. Meso- and macrozooplankton produce fast-sinking fecal pellets. With three zPFTs, the annual mean zooplankton biomass increases threefold to 210 Tg C. The new food web structure leads to a 25% increase in net primary production and a 10% decrease in export production globally. Consequently, the export ratio decreases from 17% to 12% in the model. The description of three zPFTs reduces model mismatches with observed dissolved inorganic nitrogen and chlorophyll concentrations in the South Pacific and the Arctic Ocean, respectively. Representation of three zPFTs also strongly affects phytoplankton phenology: Fast nutrient recycling by zooplankton sustains higher chlorophyll concentrations in summer and autumn. Additional zooplankton grazing delays the start of the phytoplankton bloom by 3 weeks and controls the magnitude of the bloom peak in the Southern Ocean. As a result, the system switches from a light-controlled Sverdrup system to a dilution-controlled Behrenfeld system. Overall, the results suggest that representation of multiple zPFTs is important to capture underlying processes that may shape the response of ecosystems and ecosystem services to on-going and future environmental change in model projections.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...