GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q11009, doi:10.1029/2005GC001026.
    Description: The northern scarp of the western Blanco Transform (BT) fault zone provides a "tectonic window" into crust generated at an intermediate-rate spreading center, exposing a ~2000 m vertical section of lavas and dikes. The lava unit was sampled by submersible during the Blancovin dive program in 1995, recovering a total of 61 samples over vertical distances of ~1000 m and a lateral extent of ~13 km. Major elements analyses of 40 whole rock samples exhibit typical tholeiitic fractionation trends of increasing FeO*, Na2O, and TiO2 and decreasing Al2O3 and CaO with decreasing MgO. The lava suite shows a considerable range in extent of crystallization, including primitive samples (Mg# 64) and evolved FeTi basalts (FeO〉12%;TiO2〉2%). Based on rare earth element and trace element data, all of the lavas are incompatible-element depleted normal mid-ocean ridge basalts (N-MORB;La/SmN〈1). The geochemical systematics suggest that the lavas were derived from a slightly heterogeneous mantle source, and crystallization occurred in a magmatic regime of relatively low magma flux and/or high cooling rate, consistent with magmatic processes occurring along the present-day southern Cleft Segment. The BT scarp reveals the oceanic crust in two-dimensional space, allowing us to explore temporal and spatial relationships in the horizontal and vertical directions. As a whole, the data do not appear to form regular spatial trends; rather, primitive lavas tend to cluster shallower and toward the center of the study area, while more evolved lavas are present deeper and toward the west and east. Considered within a model for construction of the upper crust, these findings suggest that the upper lavas along the BT scarp may have been emplaced off-axis, either by extensive off-axis flow or off-axis eruption, while the lower lavas represent axial flows that have subsided with time. A calculation based on an isochron model for construction of the upper crust suggests that the Cleft Segment requires at least ~50 ka to build the lower extrusive section, consistent to first order with independent estimates for the construction of intermediate-spreading rate crust.
    Description: This work was supported by the US National Science Foundation (OCE 02- 22154 to E.K. and J.K. and OCE 9400623 to M.T.).
    Keywords: Accretion ; Isochron ; MORB
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1193749 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 21(6), (2020): e2020GC008957, doi:10.1029/2020GC008957.
    Description: At the Galapagos triple junction in the equatorial Pacific Ocean, the Cocos‐Nazca spreading center does not meet the East Pacific Rise (EPR) but, instead, rifts into 0.4 Myr‐old lithosphere on the EPR flank. Westward propagation of Cocos‐Nazca spreading forms the V‐shaped Galapagos gore. Since ~1.4 Ma, opening at the active gore tip has been within the Cocos‐Galapagos microplate spreading regime. In this paper, bathymetry, magnetic, and gravity data collected over the first 400 km east of the gore tip are used to examine rifting of young lithosphere and transition to magmatic spreading segments. From inception, the axis shows structural segmentation consisting of rifted basins whose bounding faults eventually mark the gore edges. Rifting progresses to magmatic spreading over the first three segments (s1–s3), which open between Cocos‐Galapagos microplate at the presently slow rates of ~19–29 mm/year. Segments s4–s9 originated in the faster‐spreading (~48 mm/year) Cocos‐Nazca regime, and well‐defined magnetic anomalies and abyssal hill fabric close to the gore edges show the transition to full magmatic spreading was more rapid than at present time. Magnetic lineations show a 20% increase in the Cocos‐Nazca spreading rate after 1.1 Ma. The near‐axis Mantle Bouguer gravity anomaly decreases eastward and becomes more circular, suggesting mantle upwelling, increasing temperatures, and perhaps progression to a developed melt supply beneath segments. Westward propagation of individual Cocos‐Nazca segments is common with rates ranging between 12 and 54 mm/year. Segment lengths and lateral offsets between segments increase, in general, with distance from the tip of the gore.
    Description: E. M. and H. S. are grateful to the National Science Foundation for funding this work and to InterRidge and the University of Leeds for providing support for a number of the international students and scholars who were able to participate on the cruise. We are also grateful for the extraordinary work of the Captain and crew of R/V Sally Ride , whose efficiency and good cheer made the cruise such a success. We thank M. Ligi and two anonymous reviewers for their comments which greatly improved the manuscript. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
    Description: 2020-11-11
    Keywords: Galapagos triple junction ; Mid‐ocean ridges ; Seafloor spreading ; Galapagos microplate ; Plate boundaries
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...