GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mercury  (3)
  • Elsevier  (2)
  • American Geophysical Union  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2017-04-04
    Description: Measuring Hg/SO2 ratios in volcanic emissions is essential for better apportioning the volcanic contribution to the global Hg atmospheric cycle. Here, we report the first real-time simultaneous measurement Hg and SO2 in a volcanic plume, based on Lumex and MultiGAS techniques, respectively. We demonstrate that the use of these novel techniques allows the measurements of Hg/SO2 ratios with a far better time resolution than possible with more conventional methods. The Hg/SO2 ratios in the plume of F0 fumarole on La Fossa Crater, Vulcano Island spanned an order of magnitude over a 30 minute monitoring period, but was on average in qualitative agreement with the Hg/SO2 ratio directly measured in the fumarole (mean plume and fumarole ratios being 1.09 x 10-6 and 2.9 x 10-6, respectively). The factor 2 difference between plume and fumarole compositions provides evidence for fast Hg chemical processing the plume.
    Description: Published
    Description: L21307
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: partially_open
    Keywords: Mercury ; Fumarolic condensates ; Volcanic emissions ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Quantifying mercury (Hg) emissions from active volcanoes is of particular interest for better constraining the global cycle and environmental impact of this highly toxic element. Here we report on the abundance of total gaseous (TGM=Hg0 (g)+HgII (g)) and particulate (Hg(p)) mercury in the summit gas emissions of La Soufrière andesitic volcano (Guadeloupe island, Lesser Antilles), where enhanced degassing of mixed hydrothermalmagmatic volatiles has been occurring since 1992 from the Southern summit crater.We demonstrate that Hg in volcanic plume occurs predominantly as gaseous mercury, with a mean TGM/Hg(p) mass ratio of ~63. Combining the mean TGM/H2S mass ratio of the volcanic plume (~3.2×10−6), measured close to the source vent, with the H2S plume flux (~0.7 t d−1), determined simultaneously, allows us to estimate a gaseous mercury emission rate of 0.8 kg yr−1 from La Soufrière summit dome. Somewhat lower TGM/Stot mass ratio in fumarolic gases from the source vent (4.4×10−7) suggests that plume chemical composition is not well represented by the emission source (fumaroles) due to chemical processes prior to (or upon) discharge. Current mercury emission from La Soufrìere volcano represents a very small contribution to the estimated global volcanic budget for this element.
    Description: Published
    Description: 276-282
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mercury ; Fumaroles ; Volcanic plume ; Trace metals ; Gaseous and particulate mercury ; Emission rate ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: There have been limited studies to date targeting gaseous elemental mercury (GEM) flux from soil emission in enriched volcanic substrates and its relation with CO2 release and tectonic structures. In order to evaluate and understand the processes of soil–air exchanges involved at Solfatara of Pozzuoli volcano, the most active zone of Campi Flegrei caldera (Italy), an intensive field measurement survey has been achieved in September 2013 by using high-time resolution techniques. Soil–air exchange fluxes of GEM and CO2 have been measured simultaneously at 116 points, widely distributed within the crater. Quantification of gas flux has been assessed by using field accumulation chamber method in conjunction with a Lumex®-RA 915 + portable mercury vapor analyzer and a LICOR for CO2 determination, respectively. The spatial distribution of GEM and CO2 emissions correlated quite closely with the hydrothermal and geological features of the studied area. The highest GEM fluxes (from 4.04 to 5.9 × 10− 5 g m− 2 d− 1) were encountered close to the southern part of the crater interested by an intense fumarolic activity and along the SE–SW tectonic fracture (1.26 × 10− 6–6.91 × 10− 5 g GEM m− 2 d− 1). Conversely, the lowest values have been detected all along the western rim of the crater, characterized by a weak gas flux and a lush vegetation on a very sealed clay soil, which likely inhibited mercury emission (range: 1.5 × 10− 7–7.18 × 10− 6 g GEM m− 2 d− 1). Results indicate that the GEM exchange between soil and air inside the Solfatara crater is about 2–3 orders of magnitude stronger than that in the background areas (10− 8–10− 7 g m− 2 d− 1). CO2 soil diffuse degassing exhibited an analogous spatial pattern to the GEM fluxes, with emission rates ranging from about 15 to ~ 20,000 g CO2 m− 2 d− 1, from the outermost western zones to the south-eastern sector of the crater. The observed significant correlation between GEM and CO2 suggested that in volcanic system GEM volatilizes from substrate in a similar manner to the release of CO2. The quantitative estimation of the total amount of CO2 and GEM released from the Solfatara crater gave values of about 304 ± 13 and 3.7 ± 0.2 × 10− 6 t d− 1, respectively. Finally, based on our dataset and previous work, we propose that an average GEM/CO2 molar ratio of ~ 2 × 10− 8 (n = 9) is best representative of hydrothermal degassing. Taking into account the uncertainty in global hydrothermal CO2 emissions from sub-aerial environments (~ 1012 Mol yr− 1), we infer a global volcanic GEM flux from hydrothermal environments of ~ about 8.5 t yr− 1. Although this value has to be considered as a lower limit for the global emission of GEM from these sources, we suggest that on a local scale hydrothermal activity can be regarded as a significant source of GEM than previously recognized to the atmospheric pool.
    Description: Published
    Description: 26-40
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Flux Chamber Survey ; Mercury ; CO2 emissions ; Solfatara ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...