GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Diabetes, American Diabetes Association, Vol. 58, No. 6 ( 2009-06-01), p. 1373-1381
    Abstract: Diabetic cardiomyopathy is associated with increased mortality in patients with diabetes. The underlying pathology of this disease is still under discussion. We studied the role of the kinin B1 receptor on the development of experimental diabetic cardiomyopathy. RESEARCH DESIGN AND METHODS We utilized B1 receptor knockout mice and investigated cardiac inflammation, fibrosis, and oxidative stress after induction of streptozotocin (STZ)-induced diabetes. Furthermore, the left ventricular function was measured by pressure-volume loops after 8 weeks of diabetes. RESULTS B1 receptor knockout mice showed an attenuation of diabetic cardiomyopathy with improved systolic and diastolic function in comparison with diabetic control mice. This was associated with a decreased activation state of the mitogen-activated protein kinase p38, less oxidative stress, as well as normalized cardiac inflammation, shown by fewer invading cells and no increase in matrix metalloproteinase-9 as well as the chemokine CXCL-5. Furthermore, the profibrotic connective tissue growth factor was normalized, leading to a reduction in cardiac fibrosis despite severe hyperglycemia in mice lacking the B1 receptor. CONCLUSIONS These findings suggest that the B1 receptor is detrimental in diabetic cardiomyopathy in that it mediates inflammatory and fibrotic processes. These insights might have useful implications on future studies utilizing B1 receptor antagonists for treatment of human diabetic cardiomyopathy.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2009
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Diabetes, American Diabetes Association, Vol. 56, No. 7 ( 2007-07-01), p. 1834-1841
    Abstract: OBJECTIVE—We investigated the effect of pharmacological inhibition of the interleukin converting enzyme (ICE) on cardiac inflammation, apoptosis, fibrosis, and left ventricular function in an animal model of diabetes. RESEARCH DESIGN AND METHODS—Diabetes was induced in 24 Sprague-Dawley rats by injection of streptozotozin (STZ) (70 mg/kg). Diabetic animals were treated with the interleukin converting enzyme (ICE) inhibitor (ICEI) (n = 12) or with a placebo (n = 12). Nondiabetic rats served as controls (n = 12). Left ventricular function was documented 6 weeks after induction of diabetes. Cardiac tissue was analyzed for the expression of cytokines, intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, leukocyte and macrophage integrins, and collagen. Phosphorylation of Akt was analyzed by Western blot and apoptosis by Blc-2 and Bax measurements. RESULTS—Left ventricular function was significantly impaired in diabetic animals. This was accompanied by a significant increase of cytokines, cell adhesion molecules, leukocytes and macrophages, and collagen content. In addition, the phosphorylation state of Akt was reduced. These changes were significantly attenuated in the diabetic group treated with ICEI. CONCLUSIONS—Cardiac dysfunction is associated with cardiac inflammation in experimental diabetic cardiomyopathy. Both of these—cardiac dysfunction and inflammation—are attenuated after treatment with ICEI. These data suggest that anticytokine-based therapies might be beneficial in diabetic cardiomyopathy.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2007
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Diabetes, American Diabetes Association, Vol. 56, No. 3 ( 2007-03-01), p. 641-646
    Abstract: We investigated the effect of the angiotensin type 1 (AT-1) receptor antagonist, irbesartan, on matrix metalloproteinase (MMP) activity and cardiac cytokines in an animal model of diabetic cardiomyopathy. Diabetes was induced in 20 C57/bl6 mice by injection of streptozotocin (STZ). These animals were treated with irbesartan or placebo and were compared with nondiabetic controls. Left ventricular (LV) function was measured by pressure-volume loops with parameters for systolic function (end systolic elastance [Ees]) and diastolic function (cardiac stiffness) 8 weeks after STZ treatment. The cardiac protein content of interleukin (IL)1β and transforming growth factor (TGF)β1 were measured by enzyme-linked immunosorbent assay. The total cardiac collagen content and collagen type 1 and 3 were measured by histochemestry, and MMP-2 activity was measured by gelatin zymography. LV dysfunction was documented by impaired Ees and diastolic stiffness in STZ mice compared with controls. This was accompanied by increased TGFβ, IL1β, and fibrosis and decreased MMP-2 activity. Treatment with irbesartan attenuated LV dysfunction, IL1β, TGFβ, and cardiac fibrosis compared with untreated diabetic animals and normalized MMP activity. These findings present evidence that AT-1 receptor antagonists attenuate cardiac failure by decreasing cardiac inflammation and normalizing MMP activity, leading to normalized cardiac fibrosis in STZ-induced diabetic cardiomyopathy.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2007
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...