GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Diabetes Care, American Diabetes Association, Vol. 42, No. 2 ( 2019-02-01), p. 258-264
    Abstract: Abnormally elevated proinsulin secretion has been reported in type 2 and early type 1 diabetes when significant C-peptide is present. We questioned whether individuals with long-standing type 1 diabetes and low or absent C-peptide secretory capacity retained the ability to make proinsulin. RESEARCH DESIGN AND METHODS C-peptide and proinsulin were measured in fasting and stimulated sera from 319 subjects with long-standing type 1 diabetes (≥3 years) and 12 control subjects without diabetes. We considered three categories of stimulated C-peptide: 1) C-peptide positive, with high stimulated values ≥0.2 nmol/L; 2) C-peptide positive, with low stimulated values ≥0.017 but & lt;0.2 nmol/L; and 3) C-peptide & lt;0.017 nmol/L. Longitudinal samples were analyzed from C-peptide–positive subjects with diabetes after 1, 2, and 4 years. RESULTS Of individuals with long-standing type 1 diabetes, 95.9% had detectable serum proinsulin ( & gt;3.1 pmol/L), while 89.9% of participants with stimulated C-peptide values below the limit of detection ( & lt;0.017 nmol/L; n = 99) had measurable proinsulin. Proinsulin levels remained stable over 4 years of follow-up, while C-peptide decreased slowly during longitudinal analysis. Correlations between proinsulin with C-peptide and mixed-meal stimulation of proinsulin were found only in subjects with high stimulated C-peptide values (≥0.2 nmol/L). Specifically, increases in proinsulin with mixed-meal stimulation were present only in the group with high stimulated C-peptide values, with no increases observed among subjects with low or undetectable ( & lt;0.017 nmol/L) residual C-peptide. CONCLUSIONS In individuals with long-duration type 1 diabetes, the ability to secrete proinsulin persists, even in those with undetectable serum C-peptide.
    Type of Medium: Online Resource
    ISSN: 0149-5992 , 1935-5548
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2019
    detail.hit.zdb_id: 1490520-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Diabetes, American Diabetes Association, Vol. 72, No. 9 ( 2023-09-01), p. 1277-1288
    Abstract: Carboxypeptidase E (CPE) facilitates the conversion of prohormones into mature hormones and is highly expressed in multiple neuroendocrine tissues. Carriers of CPE mutations have elevated plasma proinsulin and develop severe obesity and hyperglycemia. We aimed to determine whether loss of Cpe in pancreatic β-cells disrupts proinsulin processing and accelerates development of diabetes and obesity in mice. Pancreatic β-cell–specific Cpe knockout mice (βCpeKO; Cpefl/fl x Ins1Cre/+) lack mature insulin granules and have elevated proinsulin in plasma; however, glucose-and KCl-stimulated insulin secretion in βCpeKO islets remained intact. High-fat diet–fed βCpeKO mice showed weight gain and glucose tolerance comparable with those of Wt littermates. Notably, β-cell area was increased in chow-fed βCpeKO mice and β-cell replication was elevated in βCpeKO islets. Transcriptomic analysis of βCpeKO β-cells revealed elevated glycolysis and Hif1α-target gene expression. On high glucose challenge, β-cells from βCpeKO mice showed reduced mitochondrial membrane potential, increased reactive oxygen species, reduced MafA, and elevated Aldh1a3 transcript levels. Following multiple low-dose streptozotocin injections, βCpeKO mice had accelerated development of hyperglycemia with reduced β-cell insulin and Glut2 expression. These findings suggest that Cpe and proper proinsulin processing are critical in maintaining β-cell function during the development of hyperglycemia. Article Highlights Carboxypeptidase E (Cpe) is an enzyme that removes the carboxy-terminal arginine and lysine residues from peptide precursors. Mutations in CPE lead to obesity and type 2 diabetes in humans, and whole-body Cpe knockout or mutant mice are obese and hyperglycemic and fail to convert proinsulin to insulin. We show that β-cell–specific Cpe deletion in mice (βCpeKO) does not lead to the development of obesity or hyperglycemia, even after prolonged high-fat diet treatment. However, β-cell proliferation rate and β-cell area are increased, and the development of hyperglycemia induced by multiple low-dose streptozotocin injections is accelerated in βCpeKO mice.
    Type of Medium: Online Resource
    ISSN: 0012-1797
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2023
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Diabetes Care, American Diabetes Association, Vol. 42, No. 5 ( 2019-05-01), p. e85-e86
    Type of Medium: Online Resource
    ISSN: 0149-5992 , 1935-5548
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2019
    detail.hit.zdb_id: 1490520-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Diabetes Association ; 2020
    In:  Diabetes Vol. 69, No. Supplement_1 ( 2020-06-01)
    In: Diabetes, American Diabetes Association, Vol. 69, No. Supplement_1 ( 2020-06-01)
    Abstract: Human islets, particularly beta cells, are sensitive to their environment and face many types of stressors. These stressors may stem from intense demand for hormone production, viral insult, impaired intra-islet signaling, immune activation, or a combination of any/all of the previously mentioned stressors. How islets respond to these stressors is vital to the continued function and whole-body cooperation of these important cells, especially in patients which are already carry predisposed risk. It is well understood that once immune invasion occurs, islets face a veritable barrage of cytokine/chemokine chemical stressors. Elucidating the early cellular response to these stressors is paramount to understanding the complex interconnected balance at play between the immune system and the islet. The initial response is critical and must occur quickly; this is why we chose to look at changes in phosphorylation-based dynamics which occur at these short time scales. Islet samples from 10 donor patients were harvested and cytokine treated ex vivo and subsequently collected over a time course of 10 min, 30 min and 2 hours. Samples were then prepared for mass-spectrometry-based proteomics analysis using the newly-developed BASIL (Boosting to Amplify Signal using Isobaric Labeling) method for small-scale enriched phosphoproteomics. This technique allowed for unprecedented deep phosphoproteome coverage and signaling network reconstruction of cytokine-induced stressed human islets; thereby allowing us to observe a molecular-level response to this kind of stress in this critical phase of disease pathogenesis. Disclosure A.C. Swensen: None. Y. Ye: None. E. Dirice: None. R. Kulkarni: None. W. Qian: None. Funding National Institutes of Health (UC4DK104167, R01DK122160)
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2020
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...