GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Diabetes Care, American Diabetes Association, Vol. 32, No. 1 ( 2009-01-01), p. 111-116
    Abstract: OBJECTIVE—Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is caused by FOXP3 mutations. We aimed to determine the prevalence, genetics, and clinical phenotype of FOXP3 mutations in a large cohort with permanent neonatal diabetes (PNDM). RESEARCH DESIGN AND METHODS—The 11 coding exons and the polyadenylation region of FOXP3 were sequenced in 26 male subjects with diabetes diagnosed before 6 months of age in whom common genetic causes of PNDM had been excluded. Ten subjects had at least one additional immune-related disorder, and the remaining 16 had isolated diabetes. RESULTS—We identified four hemizygous FOXP3 mutations in 6 of 10 patients with associated immune-related disorders and in 0 of 16 patients with isolated diabetes (P = 0.002). Three patients with two novel mutations (R337Q and P339A) and the previously reported L76QfsX53 developed classic IPEX syndrome and died within the first 13 months. The novel mutation V408M was found in three patients from two unrelated families and had a mild phenotype with hypothyroidism and autoimmune enteropathy (n = 2) or nephrotic syndrome (n = 1) and survival to 12–15 years. CONCLUSIONS—FOXP3 mutations result in ∼4% of cases of male patients with permanent diabetes diagnosed before 6 months. Patients not only have classic IPEX syndrome but, unexpectedly, may have a more benign phenotype. FOXP3 sequencing should be performed in any male patient with the diagnosis of diabetes in the first 6 months who develops other possible autoimmune-associated conditions, even in the absence of full IPEX syndrome.
    Type of Medium: Online Resource
    ISSN: 0149-5992 , 1935-5548
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2009
    detail.hit.zdb_id: 1490520-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Diabetes, American Diabetes Association, Vol. 60, No. 4 ( 2011-04-01), p. 1349-1353
    Abstract: NEUROG3 plays a central role in the development of both pancreatic islets and enteroendocrine cells. Homozygous hypomorphic missense mutations in NEUROG3 have been recently associated with a rare form of congenital malabsorptive diarrhea secondary to enteroendocrine cell dysgenesis. Interestingly, the patients did not develop neonatal diabetes but childhood-onset diabetes. We hypothesized that null mutations in NEUROG3 might be responsible for the disease in a patient with permanent neonatal diabetes and severe congenital malabsorptive diarrhea. RESEARCH DESIGN AND METHODS The single coding exon of NEUROG3 was amplified and sequenced from genomic DNA. The mutant protein isoforms were functionally characterized by measuring their ability to bind to an E-box element in the NEUROD1 promoter in vitro and to induce ectopic endocrine cell formation and cell delamination after in ovo chicken endoderm electroporation. RESULTS Two different heterozygous point mutations in NEUROG3 were identified in the proband [c.82G & gt;T (p.E28X) and c.404T & gt;C (p.L135P)], each being inherited from an unaffected parent. Both in vitro and in vivo functional studies indicated that the mutant isoforms are biologically inactive. In keeping with this, no enteroendocrine cells were detected in intestinal biopsy samples from the patient. CONCLUSIONS Severe deficiency of neurogenin 3 causes a rare novel subtype of permanent neonatal diabetes. This finding confirms the essential role of NEUROG3 in islet development and function in humans.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2011
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Diabetes Care, American Diabetes Association, Vol. 32, No. 8 ( 2009-08-01), p. 1428-1430
    Abstract: To assess if tooth discoloration is a novel side effect of sulfonylurea therapy in patients with permanent neonatal diabetes due to mutations in KCNJ11. RESEARCH DESIGN AND METHODS A total of 67 patients with a known KCNJ11 mutation who had been successfully transferred from insulin injections onto oral sulfonylureas were contacted and asked about the development of tooth discoloration after transfer. RESULTS Altered tooth appearance was identified in 5 of the 67 patients. This was variable in severity, ranging from mild discoloration/staining (n = 4) to loss of enamel (n = 1) and was only seen in patients taking glibenclamide (glyburide). CONCLUSIONS These previously unreported side effects may relate to the developing tooth and/or to the high local concentrations in the children who frequently chewed glibenclamide tablets or took it as a concentrated solution. Given the multiple benefits of sulfonylurea treatment for patients with activating KCNJ11 mutations, this association warrants further investigation but should not preclude such treatment.
    Type of Medium: Online Resource
    ISSN: 0149-5992 , 1935-5548
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2009
    detail.hit.zdb_id: 1490520-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Diabetes, American Diabetes Association, Vol. 59, No. 9 ( 2010-09-01), p. 2326-2331
    Abstract: NEUROD1 is expressed in both developing and mature β-cells. Studies in mice suggest that this basic helix-loop-helix transcription factor is critical in the development of endocrine cell lineage. Heterozygous mutations have previously been identified as a rare cause of maturity-onset diabetes of the young (MODY). We aimed to explore the potential contribution of NEUROD1 mutations in patients with permanent neonatal diabetes. RESEARCH DESIGN AND METHODS We sequenced the NEUROD1 gene in 44 unrelated patients with permanent neonatal diabetes of unknown genetic etiology. RESULTS Two homozygous mutations in NEUROD1 (c.427_ 428del and c.364dupG) were identified in two patients. Both mutations introduced a frameshift that would be predicted to generate a truncated protein completely lacking the activating domain. Both patients had permanent diabetes diagnosed in the first 2 months of life with no evidence of exocrine pancreatic dysfunction and a morphologically normal pancreas on abdominal imaging. In addition to diabetes, they had learning difficulties, severe cerebellar hypoplasia, profound sensorineural deafness, and visual impairment due to severe myopia and retinal dystrophy. CONCLUSIONS We describe a novel clinical syndrome that results from homozygous loss of function mutations in NEUROD1. It is characterized by permanent neonatal diabetes and a consistent pattern of neurological abnormalities including cerebellar hypoplasia, learning difficulties, sensorineural deafness, and visual impairment. This syndrome highlights the critical role of NEUROD1 in both the development of the endocrine pancreas and the central nervous system in humans.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2010
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...