GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Diabetes Association  (1)
Material
Publisher
  • American Diabetes Association  (1)
Language
Years
  • 1
    In: Diabetes, American Diabetes Association, Vol. 59, No. 4 ( 2010-04-01), p. 1030-1037
    Abstract: Exogenous administration of glucagon-like peptide-1 (GLP-1) or GLP-1 receptor agonists such as an exendin-4 has direct beneficial effects on the cardiovascular system. However, their effects on atherosclerogenesis have not been elucidated. The aim of this study was to investigate the effects of GLP-1 on accumulation of monocytes/macrophages on the vascular wall, one of the earliest steps in atherosclerogenesis. RESEARCH DESIGN AND METHODS After continuous infusion of low (300 pmol · kg−1 · day−1) or high (24 nmol · kg−1 · day−1) dose of exendin-4 in C57BL/6 or apolipoprotein E–deficient mice (apoE−/−), we evaluated monocyte adhesion to the endothelia of thoracic aorta and arteriosclerotic lesions around the aortic valve. The effects of exendin-4 were investigated in mouse macrophages and human monocytes. RESULTS Treatment with exendin-4 significantly inhibited monocytic adhesion in the aortas of C57BL/6 mice without affecting metabolic parameters. In apoE−/− mice, the same treatment reduced monocyte adhesion to the endothelium and suppressed atherosclerogenesis. In vitro treatment of mouse macrophages with exendin-4 suppressed lipopolysaccharide-induced mRNA expression of tumor necrosis factor-α and monocyte chemoattractant protein-1, and suppressed nuclear translocation of p65, a component of nuclear factor-κB. This effect was reversed by either MDL-12330A, a cAMP inhibitor or PKI14-22, a protein kinase A–specific inhibitor. In human monocytes, exendin-4 reduced the expression of CD11b. CONCLUSIONS Our data suggested that GLP-1 receptor agonists reduced monocyte/macrophage accumulation in the arterial wall by inhibiting the inflammatory response in macrophages, and that this effect may contribute to the attenuation of atherosclerotic lesion by exendin-4.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2010
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...