GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-19
    Description: A shipboard-deployable, flow-injection (FI) based instrument for monitoring iron(II) in surface marine waters is described. It incorporates a miniature, low-power photon-counting head for measuring the light emitted from the iron-(II)-catalyzed chemiluminescence (CL) luminol reaction. System control, signal acquisition, and data processing are performed in a graphical programming environment. The limit of detection for iron(II) is in the range 8-12 pmol L-1 (based on 3s of the blank), and the precision over the range 8-1000 pmol L-1 varies between 0.9 and 7.6 (n = 4). Results from a day-night deployment during a north-to-south transect of the Atlantic Ocean and a daytime transect in the Sub-Antarctic Front are presented together with ancillary temperature, salinity, and irradiance data. The generic nature of the components used to assemble the instrument make the technology readily transferable to other laboratories and the modular construction makes it easy to adapt the system for use with other CL chemistries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-24
    Description: Siderophores are chelates produced by bacteria as part of a highly specific iron uptake mechanism. They are thought to be important in the bacterial acquisition of iron in seawater and to influence iron biogeochemistry in the ocean. We have identified and quantified two types of siderophores in seawater samples collected from the Atlantic Ocean. These siderophores were identified as hydroxamate siderophores, both ferrioxamine species representative of the more soluble marine siderophores characterized to date. Ferrioxamine G was widely distributed in surface waters throughout the Atlantic Ocean, while ferrioxamine E had a more varied distribution. Total concentrations of the two siderophores were between 3 and 20 pM in the euphotic zone. If these compounds are fully complexed in seawater, they represent approximately 0.2-4.6 of the 〈0.2 μm iron pool. Our data confirm that siderophore-mediated iron acquisition is important for marine heterotrophic bacteria and indicate that siderophores play an important role in the oceanic biogeochemical cycling of iron. © 2008 American Chemical Society.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...