GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Instytut Oceanologii Polska Akademia Nauk, Sopot  (6)
  • GEOMAR  (3)
  • American Chemical Society  (1)
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 33 (1994), S. 21-25 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Instytut Oceanologii Polska Akademia Nauk, Sopot
    In:  Oceanologia, 55 (3). pp. 687-707.
    Publication Date: 2020-06-26
    Description: Data from the space-borne synthetic aperture radar (SAR) aboard the Envisat satellite and MODIS spectroradiometers on board the Terra/Aqua satellites, and the high resolution Sea Ice-Ocean Model of the Baltic Sea (BSIOM) have been used to investigate two upwelling events in the SE Baltic Sea. The combined analysis was applied to the upwelling events in July 2006 along the coasts of the Baltic States, and in June 2008 along the Polish coast and Hel Peninsula. Comparisons indicated good agreement between the sea surface temperatures and roughness signatures detected in satellite imagery and model results. It is shown that BSIOM can simulate upwelling events realistically. The utilization of modelled hydrodynamics and wind stress data together with SAR and SST information provides an extended analysis and deeper understanding of the upwelling processes in the Baltic Sea. During the active phase of upwelling when the wind is strong, the resulting coastal jet is controlled by vorticity dynamics related to depth variations in the direction of the flow. Typical upwelling patterns are related to the meandering coastal jet and thus associated with topographic features. The longshore transport of the coastal jet is of the order of 10(4) m s(-1), and the offshore transport at the surface is of the order of 10(3) m s(-1), which respectively correspond to the total and largest river runoff to the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: The Baltic Sea Science Congress was held at Rostock University, Germany, from 19 to 22 March 2007. In the session entitled"Upwelling events, coastal offshore exchange, links to biogeochemical processes" 20 presentations were given,including 7 talks and 13 posters related to the theme of the session.This paper summarises new findings of the upwelling-related studies reported in the session. It deals with investigationsbased on the use of in situ and remote sensing measurements as well as numerical modelling tools. The biogeochemicalimplications of upwelling are also discussed.Our knowledge of the fine structure and dynamic considerations of upwelling has increased in recent decades with the advent ofhigh-resolution modern measurement techniques and modelling studies. The forcing and the overall structure, duration and intensity ofupwelling events are understood quite well. However, the quantification of related transports and the contribution to the overall mixingof upwelling requires further research. Furthermore, our knowledge of the links between upwelling and biogeochemical processes is stillincomplete. Numerical modelling has advanced to the extent that horizontal resolutions of c. 0.5 nautical miles can now be applied,which allows the complete spectrum of meso-scale features to be described. Even the development of filaments can be describedrealistically in comparison with high-resolution satellite data.But the effect of upwelling at a basin scale and possible changes under changing climatic conditions remain open questions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Instytut Oceanologii Polska Akademia Nauk, Sopot
    In:  Oceanologia, 54 (3). pp. 369-393.
    Publication Date: 2020-06-26
    Description: A statistical analysis of Baltic Sea upwelling has been carried out to cover, for the first time, the entire sea area for the period 1990-2009. Weekly composite SST maps based on NOAA/AVHRR satellite data were used to evaluate the location and frequency of upwelling. The results obtained were analysed and compared with earlier studies with excellent agreement. Our study enables the most intense upwelling areas in the entire Baltic Sea to be evaluated. According to the analysis of 443 SST maps, the most common upwelling regions are found off the Swedish south and east coasts (frequency 10-25%), the Swedish coast of the Bothnian Bay (16%), the southern tip of Gotland (up to 15%), and the Finnish coast of the Gulf of Finland (up to 15%). Pronounced upwelling also occurs off the Estonian coast and the Baltic east coast (up to 15%), the Polish coast and the west coast of Rügen (10-15%); otherwise the upwelling frequency was between 5 and 10%. Additionally, simulated SST distributions derived from a Baltic Sea numerical model were analysed for the same period. Furthermore, at specific positions close to the coastline, surface winds based on the SMHI meteorological data base were analysed for the same 20-year period. Wind components parallel to the coast were discriminated into favourable and unfavourable winds forcing upwelling. The obtained frequencies of upwelling-favourable winds fit very well the observed upwelling frequencies derived from satellite SST maps. A positive trend of upwelling frequencies along the Swedish east coast and the Finnish coast of the Gulf of Finland was calculated for the period 1990-2009.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2019-04-17
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Instytut Oceanologii Polska Akademia Nauk, Sopot
    In:  Oceanologia, 48 (3). pp. 333-360.
    Publication Date: 2017-02-03
    Description: Observed basic meteorological quantities, heat and radiation fluxes from three different measurement stations in the Baltic Sea are compared with model data of the coupled sea-ice-ocean model BSIOM in order to evaluate the atmospheric forcing, corresponding surface fluxes and the sea surface response. Observational data were made available from the BASIS winter campaigns in 1998 and 2001 as well as from the r/v "Alkor" cruise in June 2001. Simulated fluxes were calculated from prescribed atmospheric forcing provided from the SMHI meteorological database and modelled sea surface temperatures. The comparison of these fluxes with observations demonstrates a strong correlation, even though mean differences in sensible heat fluxes range from 4 to 12 W m-2 in winter and -25 W m-2 in the June experiment. Differences in latent heat fluxes range from -10 to 23 W m-2. The short-wave radiation flux used as model forcing is on average 15 W m-2 less than the corresponding observations for the winter experiments and 40 W m-2 for the June experiment. Differences in net long-wave radiation fluxes range from -5 to 12 W m-2 in winter and -62 W m-2 for the June experiment. The correspondence between measured and calculated momentum fluxes is very high, which confirms the usability of our model component for calculating surface winds and wind stresses from the atmospheric surface pressure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: The thermal stratification of the upper water layers in the Baltic Sea varies seasonally in response to the annual cycle of solar heating and wind-induced mixing. In winter, the stratification down to the halocline is almost completely eroded by convection and strong wind mixing. Monthly averaged temperature profiles obtained from the ICES hydrographic database were used to study the long-term variability (1950 to 2005) of winter water mass formation in different deep basins of the Baltic Sea east of the island of Bornholm. Besides strong interannual variability of deep winter water temperatures, the last two decades show a positive trend (increase of 1-1.5°C). Correlations of winter surface temperatures to temperatures of the winter water body located directly above or within the top of the halocline were strongly positive until the autumn months. Such a close coupling allows sea surface temperatures in winter to be used to forecast the seasonal development of the thermal signature in deeper layers with a high degree of confidence. The most significant impact of winter sea surface temperatures on the thermal signature in this depth range can be assigned to February/March. Stronger solar heating during spring and summer results in thermal stratification of the water column leading to a complete decoupling of surface and deep winter water temperatures. Based on laboratory experiments, temperature-dependent relationships were utilised to analyse interannual variations of biological processes with special emphasis on the upper trophic levels (e.g., stage-specific developmental rates of zooplankton and survival rates of fish eggs).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Instytut Oceanologii Polska Akademia Nauk, Sopot
    In:  Oceanologia, 52 (1). pp. 77-99.
    Publication Date: 2019-09-23
    Description: Coastal upwelling often reveals itself during the thermal stratification season as an abrupt sea surface temperature (SST) drop. Its intensity depends not only on the magnitude of an upwelling-favourable wind impulse but also on the temperature stratification of the water column during the initial stage of the event. When a "chain" of upwelling events is taking place, one event may play a part in forming the initial stratification for the next one; consequently, SST may drop significantly even with a reduced wind impulse. Two upwelling events were simulated on the Polish coast in August 1996 using a three-dimensional, baroclinic prognostic model. The model results proved to be in good agreement with in situ observations and satellite data. Comparison of the simulated upwelling events show that the first one required a wind impulse of 28000 kg m-1 s-1 to reach its mature, full form, whereas an impulse of only 7500 kg m-1 s-1 was sufficient to bring about a significant drop in SST at the end of the second event. In practical applications like operational modelling, the initial stratification conditions prior to an upwelling event should be described with care in order to be able to simulate the coming event with very good accuracy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-21
    Description: Modern digital scientific workflows - often implying Big Data challenges - require data infrastructures and innovative data science methods across disciplines and technologies. Diverse activities within and outside HGF deal with these challenges, on all levels. The series of Data Science Symposia fosters knowledge exchange and collaboration in the Earth and Environment research community. We invited contributions to the overarching topics of data management, data science and data infrastructures. The series of Data Science Symposia is a joint initiative by the three Helmholtz Centers HZG, AWI and GEOMAR Organization: Hela Mehrtens and Daniela Henkel (GEOMAR)
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...