GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Astronomical Society  (2)
  • 1
    In: The Astronomical Journal, American Astronomical Society, Vol. 161, No. 2 ( 2021-02-01), p. 56-
    Abstract: We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultra-short-period planet. This bright ( V = 10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P = 0.44 days, R p = 1.45 ± 0.11 R ⊕ ), c (TOI-561.01, P = 10.8 days, R p = 2.90 ± 0.13 R ⊕ ), and d (TOI-561.03, P = 16.3 days, R p = 2.32 ± 0.16 R ⊕ ). The star is chemically ([Fe/H] = −0.41 ± 0.05, [ α /Fe] = +0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population, making TOI-561 one of the oldest (10 ± 3 Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2 ± 0.8 M ⊕ and g cm −3 , consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0 ± 2.3 M ⊕ and 1.6 ± 0.6 g cm −3 , consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies.
    Type of Medium: Online Resource
    ISSN: 0004-6256 , 1538-3881
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2021
    detail.hit.zdb_id: 2207625-6
    detail.hit.zdb_id: 2003104-X
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Astronomical Journal, American Astronomical Society, Vol. 166, No. 2 ( 2023-08-01), p. 49-
    Abstract: We report the discovery and Doppler mass measurement of a 7.4 days 2.3 R ⊕ mini-Neptune around a metal-poor K dwarf BD+29 2654 (TOI-2018). Based on a high-resolution Keck/HIRES spectrum, the Gaia parallax, and multiwavelength photometry from the UV to the mid-infrared, we found that the host star has T eff = 4174 − 42 + 34 K, log g = 4.62 − 0.03 + 0.02 , [Fe/H] = − 0.58 ± 0.18, M * = 0.57 ± 0.02 M ⊙ , and R * = 0.62 ± 0.01 R ⊙ . Precise Doppler measurements with Keck/HIRES revealed a planetary mass of M p = 9.2 ± 2.1 M ⊕ for TOI-2018 b. TOI-2018 b has a mass and radius that are consistent with an Earthlike core, with a ∼1%-by-mass hydrogen/helium envelope or an ice–rock mixture. The mass of TOI-2018 b is close to the threshold for runaway accretion and hence giant planet formation. Such a threshold is predicted to be around 10 M ⊕ or lower for a low-metallicity (low-opacity) environment. If TOI-2018 b is a planetary core that failed to undergo runaway accretion, it may underline the reason why giant planets are rare around low-metallicity host stars (one possibility is their shorter disk lifetimes). With a K -band magnitude of 7.1, TOI-2018 b may be a suitable target for transmission spectroscopy with the James Webb Space Telescope. The system is also amenable to metastable Helium observation; the detection of a Helium exosphere would help distinguish between a H/He-enveloped planet and a water world.
    Type of Medium: Online Resource
    ISSN: 0004-6256 , 1538-3881
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207625-6
    detail.hit.zdb_id: 2003104-X
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...