GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (4)
Material
Publisher
  • American Association for the Advancement of Science (AAAS)  (4)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2022
    In:  Research Vol. 2022 ( 2022-01)
    In: Research, American Association for the Advancement of Science (AAAS), Vol. 2022 ( 2022-01)
    Abstract: Expensive instruments and complicated data processing are often required to discriminate solvents with similar structures and properties. Colorimetric sensors with high selectivity, low cost, and good portability are highly desirable to simplify such detection tasks. Herein, we report the fabrication of a photonic crystal sensor based on the self-assembled resorcinol formaldehyde (RF) hollow spheres to realize colorimetric sensing of polar solvents, including homologs and isomers based on the saturated diffusion time. The diffusion of solvent molecules through the photonic crystal film exhibits a unique three-step diffusion profile accompanied by a dynamic color change, as determined by the physicochemical properties of the solvent molecules and their interactions with the polymer shells, making it possible to accurately identify the solvent type based on the dynamic reflection spectra or visual perception. With its superior selectivity and sensitivity, this single-component colorimetric sensor represents a straightforward tool for convenient solvent detection and identification.
    Type of Medium: Online Resource
    ISSN: 2639-5274
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 2949955-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2021
    In:  Science Vol. 373, No. 6562 ( 2021-09-24), p. 1523-1527
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 373, No. 6562 ( 2021-09-24), p. 1523-1527
    Abstract: Starches, a storage form of carbohydrates, are a major source of calories in the human diet and a primary feedstock for bioindustry. We report a chemical-biochemical hybrid pathway for starch synthesis from carbon dioxide (CO 2 ) and hydrogen in a cell-free system. The artificial starch anabolic pathway (ASAP), consisting of 11 core reactions, was drafted by computational pathway design, established through modular assembly and substitution, and optimized by protein engineering of three bottleneck-associated enzymes. In a chemoenzymatic system with spatial and temporal segregation, ASAP, driven by hydrogen, converts CO 2 to starch at a rate of 22 nanomoles of CO 2 per minute per milligram of total catalyst, an ~8.5-fold higher rate than starch synthesis in maize. This approach opens the way toward future chemo-biohybrid starch synthesis from CO 2 .
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 6, No. 21 ( 2020-05-22)
    Abstract: Many annotated long noncoding RNAs (lncRNAs) harbor predicted short open reading frames (sORFs), but the coding capacities of these sORFs and the functions of the resulting micropeptides remain elusive. Here, we report that human lncRNA MIR155HG encodes a 17–amino acid micropeptide, which we termed miPEP155 (P155). MIR155HG is highly expressed by inflamed antigen-presenting cells, leading to the discovery that P155 interacts with the adenosine 5′-triphosphate binding domain of heat shock cognate protein 70 (HSC70), a chaperone required for antigen trafficking and presentation in dendritic cells (DCs). P155 modulates major histocompatibility complex class II–mediated antigen presentation and T cell priming by disrupting the HSC70-HSP90 machinery. Exogenously injected P155 improves two classical mouse models of DC-driven auto inflammation. Collectively, we demonstrate the endogenous existence of a micropeptide encoded by a transcript annotated as “non-protein coding” and characterize a micropeptide as a regulator of antigen presentation and a suppressor of inflammatory diseases.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2019
    In:  Science Translational Medicine Vol. 11, No. 495 ( 2019-06-05)
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 11, No. 495 ( 2019-06-05)
    Abstract: Progressive peritoneal fibrosis affects patients receiving peritoneal dialysis (PD) and has no reliable treatment. The mechanisms that initiate and sustain peritoneal fibrosis remain incompletely elucidated. To overcome these problems, we developed a strategy that prevents peritoneal fibrosis by suppressing PD-stimulated mesothelial-to-mesenchymal transition (MMT). We evaluated single-cell transcriptomes of mesothelial cells obtained from normal peritoneal biopsy and effluent from PD-treated patients. In cells undergoing MMT, we found cellular heterogeneity and intermediate transition states associated with up-regulation of enzymes involved in glycolysis. The expression of glycolytic enzymes was correlated with the development of MMT. Using gene expression profiling and metabolomics analyses, we confirmed that PD fluid induces metabolic reprogramming, characterized as hyperglycolysis, in mouse peritoneum. We found that transforming growth factor β1 (TGF-β1) can substitute for PD fluid to stimulate hyperglycolysis, suppressing mitochondrial respiration in mesothelial cells. Blockade of hyperglycolysis with 2-deoxyglucose (2-DG) inhibited TGF-β1–induced profibrotic cellular phenotype and peritoneal fibrosis in mice. We developed a triad of adeno-associated viruses that overexpressed microRNA-26a and microRNA-200a while inhibiting microRNA-21a to target hyperglycolysis and fibrotic signaling. Intraperitoneal injection of the viral triad inhibited the development of peritoneal fibrosis induced by PD fluid in mice. We conclude that hyperglycolysis is responsible for MMT and peritoneal fibrogenesis, and this aberrant metabolic state can be corrected by modulating microRNAs in the peritoneum. These results could provide a therapeutic strategy to combat peritoneal fibrosis.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...