GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (1)
Material
Publisher
  • American Association for the Advancement of Science (AAAS)  (1)
Language
Years
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2021
    In:  Science Advances Vol. 7, No. 18 ( 2021-04-30)
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 7, No. 18 ( 2021-04-30)
    Abstract: Self-healing or healable polymers can recuperate their function after physical damage. This process involves diffusion of macromolecules across severed interfaces until the structure of the interphase matches that of the pristine material. However, monitoring this nanoscale process and relating it to the mechanical recovery remain elusive. We report that studying diffusion across healed interfaces and a correlation of contact time, diffusion depth, and mechanical properties is possible when two metallosupramolecular polymers assembled with different lanthanoid salts are mended. The materials used display similar properties, while the metal ions can be tracked with high spatial resolution by energy-dispersive x-ray spectrum imaging. We find that healing actual defects requires an interphase thickness in excess of 100 nm, 10 times more than previously established for self-adhesion of smooth films of glassy polymers.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...