GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (22)
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 322, No. 5903 ( 2008-11-07), p. 940-942
    Abstract: A record from Wanxiang Cave, China, characterizes Asian Monsoon (AM) history over the past 1810 years. The summer monsoon correlates with solar variability, Northern Hemisphere and Chinese temperature, Alpine glacial retreat, and Chinese cultural changes. It was generally strong during Europe's Medieval Warm Period and weak during Europe's Little Ice Age, as well as during the final decades of the Tang, Yuan, and Ming Dynasties, all times that were characterized by popular unrest. It was strong during the first several decades of the Northern Song Dynasty, a period of increased rice cultivation and dramatic population increase. The sign of the correlation between the AM and temperature switches around 1960, suggesting that anthropogenic forcing superseded natural forcing as the major driver of AM changes in the late 20th century.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2008
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6643 ( 2023-04-28)
    Abstract: A major challenge in genomics is discerning which bases among billions alter organismal phenotypes and affect health and disease risk. Evidence of past selective pressure on a base, whether highly conserved or fast evolving, is a marker of functional importance. Bases that are unchanged in all mammals may shape phenotypes that are essential for organismal health. Bases that are evolving quickly in some species, or changed only in species that share an adaptive trait, may shape phenotypes that support survival in specific niches. Identifying bases associated with exceptional capacity for cellular recovery, such as in species that hibernate, could inform therapeutic discovery. RATIONALE The power and resolution of evolutionary analyses scale with the number and diversity of species compared. By analyzing genomes for hundreds of placental mammals, we can detect which individual bases in the genome are exceptionally conserved (constrained) and likely to be functionally important in both coding and noncoding regions. By including species that represent all orders of placental mammals and aligning genomes using a method that does not require designating humans as the reference species, we explore unusual traits in other species. RESULTS Zoonomia’s mammalian comparative genomics resources are the most comprehensive and statistically well-powered produced to date, with a protein-coding alignment of 427 mammals and a whole-genome alignment of 240 placental mammals representing all orders. We estimate that at least 10.7% of the human genome is evolutionarily conserved relative to neutrally evolving repeats and identify about 101 million significantly constrained single bases (false discovery rate 〈 0.05). We cataloged 4552 ultraconserved elements at least 20 bases long that are identical in more than 98% of the 240 placental mammals. Many constrained bases have no known function, illustrating the potential for discovery using evolutionary measures. Eighty percent are outside protein-coding exons, and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Constrained bases tend to vary less within human populations, which is consistent with purifying selection. Species threatened with extinction have few substitutions at constrained sites, possibly because severely deleterious alleles have been purged from their small populations. By pairing Zoonomia’s genomic resources with phenotype annotations, we find genomic elements associated with phenotypes that differ between species, including olfaction, hibernation, brain size, and vocal learning. We associate genomic traits, such as the number of olfactory receptor genes, with physical phenotypes, such as the number of olfactory turbinals. By comparing hibernators and nonhibernators, we implicate genes involved in mitochondrial disorders, protection against heat stress, and longevity in this physiologically intriguing phenotype. Using a machine learning–based approach that predicts tissue-specific cis - regulatory activity in hundreds of species using data from just a few, we associate changes in noncoding sequence with traits for which humans are exceptional: brain size and vocal learning. CONCLUSION Large-scale comparative genomics opens new opportunities to explore how genomes evolved as mammals adapted to a wide range of ecological niches and to discover what is shared across species and what is distinctively human. High-quality data for consistently defined phenotypes are necessary to realize this potential. Through partnerships with researchers in other fields, comparative genomics can address questions in human health and basic biology while guiding efforts to protect the biodiversity that is essential to these discoveries. Comparing genomes from 240 species to explore the evolution of placental mammals. Our new phylogeny (black lines) has alternating gray and white shading, which distinguishes mammalian orders (labeled around the perimeter). Rings around the phylogeny annotate species phenotypes. Seven species with diverse traits are illustrated, with black lines marking their branch in the phylogeny. Sequence conservation across species is described at the top left. IMAGE CREDIT: K. MORRILL
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 378, No. 6615 ( 2022-10-07)
    Abstract: Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century. Expanse of SARS-CoV-2 sequencing capacity in Africa. ( A ) African countries (shaded in gray) and institutions (red circles) with on-site sequencing facilities that are capable of producing SARS-CoV-2 whole genomes locally. ( B ) The number of SARS-CoV-2 genomes produced per country and the proportion of those genomes that were produced locally, regionally within Africa, or abroad. ( C ) Decreased turnaround time of sequencing output in Africa to an almost real-time release of genomic data.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6643 ( 2023-04-28)
    Abstract: Thousands of genetic variants have been associated with human diseases and traits through genome-wide association studies (GWASs). Translating these discoveries into improved therapeutics requires discerning which variants among hundreds of candidates are causally related to disease risk. To date, only a handful of causal variants have been confirmed. Here, we leverage 100 million years of mammalian evolution to address this major challenge. RATIONALE We compared genomes from hundreds of mammals and identified bases with unusually few variants (evolutionarily constrained). Constraint is a measure of functional importance that is agnostic to cell type or developmental stage. It can be applied to investigate any heritable disease or trait and is complementary to resources using cell type– and time point–specific functional assays like Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTEx). RESULTS Using constraint calculated across placental mammals, 3.3% of bases in the human genome are significantly constrained, including 57.6% of coding bases. Most constrained bases (80.7%) are noncoding. Common variants (allele frequency ≥ 5%) and low-frequency variants (0.5% ≤ allele frequency 〈 5%) are depleted for constrained bases (1.85 versus 3.26% expected by chance, P 〈 2.2 × 10 −308 ). Pathogenic ClinVar variants are more constrained than benign variants ( P 〈 2.2 × 10 −16 ). The most constrained common variants are more enriched for disease single-nucleotide polymorphism (SNP)–heritability in 63 independent GWASs. The enrichment of SNP-heritability in constrained regions is greater (7.8-fold) than previously reported in mammals and is even higher in primates (11.1-fold). It exceeds the enrichment of SNP-heritability in nonsynonymous coding variants (7.2-fold) and fine-mapped expression quantitative trait loci (eQTL)–SNPs (4.8-fold). The enrichment peaks near constrained bases, with a log-linear decrease of SNP-heritability enrichment as a function of the distance to a constrained base. Zoonomia constraint scores improve functionally informed fine-mapping. Variants at sites constrained in mammals and primates have greater posterior inclusion probabilities and higher per-SNP contributions. In addition, using both constraint and functional annotations improves polygenic risk score accuracy across a range of traits. Finally, incorporating constraint information into the analysis of noncoding somatic variants in medulloblastomas identifies new candidate driver genes. CONCLUSION Genome-wide measures of evolutionary constraint can help discern which variants are functionally important. This information may accelerate the translation of genomic discoveries into the biological, clinical, and therapeutic knowledge that is required to understand and treat human disease. Using evolutionary constraint in genomic studies of human diseases. ( A ) Constraint was calculated across 240 mammal species, including 43 primates (teal line). ( B ) Pathogenic ClinVar variants ( N = 73,885) are more constrained across mammals than benign variants ( N = 231,642; P 〈 2.2 × 10 −16 ). ( C ) More-constrained bases are more enriched for trait-associated variants (63 GWASs). ( D ) Enrichment of heritability is higher in constrained regions than in functional annotations (left), even in a joint model with 106 annotations (right). ( E ) Fine-mapping (PolyFun) using a model that includes constraint scores identifies an experimentally validated association at rs1421085. Error bars represent 95% confidence intervals. BMI, body mass index; LF, low frequency; PIP, posterior inclusion probability.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6643 ( 2023-04-28)
    Abstract: An estimated 160 million years have passed since the first placental mammals evolved. These eutherians are categorized into 19 orders consisting of nearly 4000 extant species, with ~70% being bats or rodents. Broad, in-depth, and comparative genomic studies across Eutheria have previously been unachievable because of the lack of genomic resources. The collaboration of the Zoonomia Consortium made available hundreds of high-quality genome assemblies for comparative analysis. Our focus within the consortium was to investigate the evolution of transposable elements (TEs) among placental mammals. Using these data, we identified previously known TEs, described previously unknown TEs, and analyzed the TE distribution among multiple taxonomic levels. RATIONALE The emergence of accurate and affordable sequencing technology has propelled efforts to sequence increasingly more nonmodel mammalian genomes in the past decade. Most of these efforts have traditionally focused on genic regions searching for patterns of selection or variation in gene regulation. The common trend of ignoring or trivializing TE annotation with newly published genomes has resulted in severe lag of TE analyses, leading to extensive undiscovered TE variation. This oversight has neglected an important source of evolution because the accumulation of TEs is attributable to drastic alterations in genome architecture, including insertions, deletions, duplications, translocations, and inversions. Our approach to the Zoonomia dataset was to provide future inquirers accurate and meticulous TE curations and to describe taxonomic variation among eutherians. RESULTS We annotated the TE content of 248 mammalian genome assemblies, which yielded a library of 25,676 consensus TE sequences, 8263 of which were previously unidentified TE sequences (available at https://dfam.org ). We affirmed that the largest component of a typical mammalian genome is comprised of TEs (average 45.6%). Of the 248 assemblies, the lowest genomic percentage of TEs was found in the star-nosed mole (27.6%), and the largest percentage was seen in the aardvark (74.5%), whose increase in TE accumulation drove a corresponding increase in genome size—a correlation we observed across Eutheria. The overall genomic proportions of recently accumulated TEs were roughly similar across most mammals in the dataset, with a few notable exceptions (see the figure). Diversity of recently accumulated TEs is highest among multiple families of bats, mostly driven by substantial DNA transposon activity. Our data also exhibit an increase of recently accumulated DNA transposons among carnivore lineages over their herbivorous counterparts, which suggests that diet may play a role in determining the genomic content of TEs. CONCLUSION The copious TE data provided in this work emanated from the largest comprehensive TE curation effort to date. Considering the wide-ranging effects that TEs impose on genomic architecture, these data are an important resource for future inquiries into mammalian genomics and evolution and suggest avenues for continued study of these important yet understudied genomic denizens. Boxplots depicting the range of recently accumulated TEs among mammals (by proportion of genome). Five categories of TE were examined: DNA transposons, long interspersed elements (LINEs), long terminal repeat (LTR) retrotransposons, rolling circle (RC) transposons, and short interspersed elements (SINEs). Species with the highest and lowest proportions for each TE type are indicated by a picture of the organism and its common name. With regard to RC and DNA transposons, we found that most mammalian genome assemblies exhibit essentially zero recent accumulation (RC: 240 of 248 mammals had 〈 0.1%; DNA: 210 of 248 mammals had 〈 0.1%). ILLUSTRATIONS: BRITTANY ANN HALE
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 364, No. 6442 ( 2019-05-24)
    Abstract: Approximately 2.4% of the human mitochondrial DNA (mtDNA) genome exhibits common homoplasmic genetic variation. We analyzed 12,975 whole-genome sequences to show that 45.1% of individuals from 1526 mother–offspring pairs harbor a mixed population of mtDNA (heteroplasmy), but the propensity for maternal transmission differs across the mitochondrial genome. Over one generation, we observed selection both for and against variants in specific genomic regions; known variants were more likely to be transmitted than previously unknown variants. However, new heteroplasmies were more likely to match the nuclear genetic ancestry as opposed to the ancestry of the mitochondrial genome on which the mutations occurred, validating our findings in 40,325 individuals. Thus, human mtDNA at the population level is shaped by selective forces within the female germ line under nuclear genetic control, which ensures consistency between the two independent genetic lineages.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6643 ( 2023-04-28)
    Abstract: Diverse phenotypes, including large brains relative to body size, group living, and vocal learning ability, have evolved multiple times throughout mammalian history. These shared phenotypes may have arisen repeatedly by means of common mechanisms discernible through genome comparisons. RATIONALE Protein-coding sequence differences have failed to fully explain the evolution of multiple mammalian phenotypes. This suggests that these phenotypes have evolved at least in part through changes in gene expression, meaning that their differences across species may be caused by differences in genome sequence at enhancer regions that control gene expression in specific tissues and cell types. Yet the enhancers involved in phenotype evolution are largely unknown. Sequence conservation–based approaches for identifying such enhancers are limited because enhancer activity can be conserved even when the individual nucleotides within the sequence are poorly conserved. This is due to an overwhelming number of cases where nucleotides turn over at a high rate, but a similar combination of transcription factor binding sites and other sequence features can be maintained across millions of years of evolution, allowing the function of the enhancer to be conserved in a particular cell type or tissue. Experimentally measuring the function of orthologous enhancers across dozens of species is currently infeasible, but new machine learning methods make it possible to make reliable sequence-based predictions of enhancer function across species in specific tissues and cell types. RESULTS To overcome the limits of studying individual nucleotides, we developed the Tissue-Aware Conservation Inference Toolkit (TACIT). Rather than measuring the extent to which individual nucleotides are conserved across a region, TACIT uses machine learning to test whether the function of a given part of the genome is likely to be conserved. More specifically, convolutional neural networks learn the tissue- or cell type–specific regulatory code connecting genome sequence to enhancer activity using candidate enhancers identified from only a few species. This approach allows us to accurately associate differences between species in tissue or cell type–specific enhancer activity with genome sequence differences at enhancer orthologs. We then connect these predictions of enhancer function to phenotypes across hundreds of mammals in a way that accounts for species’ phylogenetic relatedness. We applied TACIT to identify candidate enhancers from motor cortex and parvalbumin neuron open chromatin data that are associated with brain size relative to body size, solitary living, and vocal learning across 222 mammals. Our results include the identification of multiple candidate enhancers associated with brain size relative to body size, several of which are located in linear or three-dimensional proximity to genes whose protein-coding mutations have been implicated in microcephaly or macrocephaly in humans. We also identified candidate enhancers associated with the evolution of solitary living near a gene implicated in separation anxiety and other enhancers associated with the evolution of vocal learning ability. We obtained distinct results for bulk motor cortex and parvalbumin neurons, demonstrating the value in applying TACIT to both bulk tissue and specific minority cell type populations. To facilitate future analyses of our results and applications of TACIT, we released predicted enhancer activity of 〉 400,000 candidate enhancers in each of 222 mammals and their associations with the phenotypes we investigated. CONCLUSION TACIT leverages predicted enhancer activity conservation rather than nucleotide-level conservation to connect genetic sequence differences between species to phenotypes across large numbers of mammals. TACIT can be applied to any phenotype with enhancer activity data available from at least a few species in a relevant tissue or cell type and a whole-genome alignment available across dozens of species with substantial phenotypic variation. Although we developed TACIT for transcriptional enhancers, it could also be applied to genomic regions involved in other components of gene regulation, such as promoters and splicing enhancers and silencers. As the number of sequenced genomes grows, machine learning approaches such as TACIT have the potential to help make sense of how conservation of, or changes in, subtle genome patterns can help explain phenotype evolution. Tissue-Aware Conservation Inference Toolkit (TACIT) associates genetic differences between species with phenotypes. TACIT works by generating open chromatin data from a few species in a tissue related to a phenotype, using the sequences underlying open and closed chromatin regions to train a machine learning model for predicting tissue-specific open chromatin and associating open chromatin predictions across dozens of mammals with the phenotype. [Species silhouettes are from PhyloPic]
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6643 ( 2023-04-28)
    Abstract: Human accelerated regions (HARs) are evolutionarily conserved sequences that acquired an unexpectedly high number of nucleotide substitutions in the human genome since divergence from our common ancestor with chimpanzees. Prior work has established that many HARs are gene regulatory enhancers that function during embryonic development, particularly in neurodevelopment, and that most HARs show signatures of positive selection. However, the events that caused the sudden change in selective pressures on HARs remain a mystery. RATIONALE Because HARs acquired many substitutions in our ancestors after millions of years of extreme constraint across diverse mammals, we reasoned that their conserved roles in regulating development of the brain and other organs must have changed during human evolution. One mechanism that could drive such a functional shift is enhancer hijacking, whereby the target gene repertoire of a noncoding sequence is changed through alterations in three-dimensional genome folding. The regulatory information encoded in a hijacked enhancer would likely need to change to avoid deleterious expression of the altered target gene while also possibly supporting modified expression patterns. Structural variants—large genomic insertions, deletions, and rearrangements—are the greatest sources of sequence differences between the human and chimpanzee genomes, and they have the potential to affect how a region of the genome folds and localizes in the nucleus. We therefore hypothesized that some HARs were generated through enhancer hijacking triggered by nearby human-specific structural variants (hsSVs). RESULTS We leveraged an alignment of hundreds of mammalian genomes plus a Nextflow pipeline that we wrote for automating the detection of lineage-specific accelerated regions to identify 312 high-confidence HARs (zooHARs). Through massively parallel reporter assays and machine learning integration of hundreds of epigenomic datasets, we showed that many zooHARs function as neurodevelopmental enhancers and that their human substitutions alter transcription factor binding sites, consistent with previous studies. We further mapped zooHARs to specific cell types and tissues using single-cell open chromatin and gene expression data, and we found that they represent a more diverse set of neurodevelopmental processes than a parallel set of chimpanzee accelerated regions. To test the enhancer hijacking hypothesis, we first examined the three-dimensional neighborhoods of zooHARs using publicly available chromatin capture (Hi-C) data, finding a significant enrichment of zooHARs in domains with hsSVs. This motivated us to use deep learning to predict how hsSVs changed genome folding in the human versus the chimpanzee genomes. We found that 30% of zooHARs occur within 500 kb of an hsSV that substantially alters local chromatin interactions, and we confirmed this association in Hi-C data that we generated in human and chimpanzee neural progenitor cells. Finally, we showed that chromatin domains containing zooHARs and hsSVs are enriched for genes differentially expressed in human versus chimpanzee neurodevelopment. CONCLUSION The origin of many HARs may be explained by human-specific structural variants that altered three-dimensional genome folding, causing evolutionarily conserved enhancers to adapt to different target genes and regulatory domains. Example of HAR enhancer hijacking. The HAR is nearby and regulates gene A, but not gene B, as the chimpanzee genome folds. An insertion in the human genome brings the HAR closer to gene B, causing expression of gene B. The HAR adapts to being in gene B’s regulatory domain through substitutions to previously conserved nucleotides.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6643 ( 2023-04-28)
    Abstract: It has been almost 100 years since the sled dog Balto helped save the community of Nome, Alaska, from a diphtheria outbreak. Today, Balto symbolizes the indomitable spirit of the sled dog. He is immortalized in statue and film, and is physically preserved and on display at the Cleveland Museum of Natural History. Balto represents a dog population that was reputed to tolerate harsh conditions at a time when northern communities were reliant on sled dogs. Investigating Balto’s genome sequence using technologies for sequencing degraded DNA offers a new perspective on this historic population. RATIONALE Analyzing high-coverage (40.4-fold) DNA sequencing data from Balto through comparison with large genomic data resources offers an opportunity to investigate genetic diversity and genome function. We leveraged the genome sequence data from 682 dogs, including both working sled dogs and dog breeds, as well as evolutionary constraint scores from the Zoonomia alignment of 240 mammals, to reconstruct Balto’s phenotype and investigate his ancestry and what might distinguish him from modern dogs. RESULTS Balto shares just part of his diverse ancestry with the eponymous Siberian husky breed and was more genetically diverse than both modern breeds and working sled dogs. Both Balto and working sled dogs had a lower burden of rare, potentially damaging variation than modern breeds and fewer potentially damaging variants, suggesting that they represent genetically healthier populations. We inferred Balto’s appearance on the basis of genomic variants known to shape physical characteristics in dogs today. We found that Balto had a combination of coat features atypical for modern sled dog breeds and a slightly smaller stature, inferences that are confirmed by comparison to historical photographs. Balto’s ability to digest starch was enhanced compared to wolves and Greenland sled dogs but reduced compared to modern breeds. He carried a compendium of derived homozygous coding variants at constrained positions in genes connected to bone and skin development, which may have conferred a functional advantage. CONCLUSION Balto belonged to a population of small, fast, and fit sled dogs imported from Siberia. By sequencing his genome from his taxidermied remains and analyzing these data in the context of large comparative and canine datasets, we show that Balto and his working sled dog contemporaries were more genetically diverse than modern breeds and may have carried variants that helped them survive the harsh conditions of 1920s Alaska. Although the era of Balto and his contemporaries has passed, comparative genomics, supported by a growing collection of modern and past genomes, can provide insights into the selective pressures that shaped them. Balto, famed 20th-century Alaskan sled dog, shares common ancestry with modern Asian and Arctic canine lineages. In an unsupervised admixture analysis, Balto’s ancestry, representing 20th-century Alaskan sled dogs, is assigned predominantly to four Arctic lineage dog populations. He had no discernable wolf ancestry. The Alaskan sled dogs (a working population) did not fall into a distinct ancestry cluster but shared about a third of their ancestry with Balto in the supervised admixture analysis. Balto and working sled dogs carried fewer constrained and missense rare variants than modern dog breeds. IMAGE CREDIT: K. MORRILL
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6643 ( 2023-04-28)
    Abstract: The Anthropocene is marked by an accelerated loss of biodiversity, widespread population declines, and a global conservation crisis. Given limited resources for conservation intervention, an approach is needed to identify threatened species from among the thousands lacking adequate information for status assessments. Such prioritization for intervention could come from genome sequence data, as genomes contain information about demography, diversity, fitness, and adaptive potential. However, the relevance of genomic data for identifying at-risk species is uncertain, in part because genetic variation may reflect past events and life histories better than contemporary conservation status. RATIONALE The Zoonomia multispecies alignment presents an opportunity to systematically compare neutral and functional genomic diversity and their relationships to contemporary extinction risk across a large sample of diverse mammalian taxa. We surveyed 240 species spanning from the “Least Concern” to “Critically Endangered” categories, as published in the International Union for Conservation of Nature’s Red List of Threatened Species. Using a single genome for each species, we estimated historical effective population sizes ( N e ) and distributions of genome-wide heterozygosity. To estimate genetic load, we identified substitutions relative to reconstructed ancestral sequences, assuming that mutations at evolutionarily conserved sites and in protein-coding sequences, especially in genes essential for viability in mice, are predominantly deleterious. We examined relationships between the conservation status of species and metrics of heterozygosity, demography, and genetic load and used these data to train and test models to distinguish threatened from nonthreatened species. RESULTS Species with smaller historical N e are more likely to be categorized as at risk of extinction, suggesting that demography, even from periods more than 10,000 years in the past, may be informative of contemporary resilience. Species with smaller historical N e also carry proportionally higher burdens of weakly and moderately deleterious alleles, consistent with theoretical expectations of the long-term accumulation and fixation of genetic load under strong genetic drift. We found weak support for a causative link between fixed drift load and extinction risk; however, other types of genetic load not captured in our data, such as rare, highly deleterious alleles, may also play a role. Although ecological (e.g., physiological, life-history, and behavioral) variables were the best predictors of extinction risk, genomic variables nonrandomly distinguished threatened from nonthreatened species in regression and machine learning models. These results suggest that information encoded within even a single genome can provide a risk assessment in the absence of adequate ecological or population census data. CONCLUSION Our analysis highlights the potential for genomic data to rapidly and inexpensively gauge extinction risk by leveraging relationships between contemporary conservation status and genetic variation shaped by the long-term demographic history of species. As more resequencing data and additional reference genomes become available, estimates of genetic load, estimates of recent demographic history, and accuracy of predictive models will improve. We therefore echo calls for including genomic information in assessments of the conservation status of species. Genomic information can help predict extinction risk in diverse mammalian species. Across 240 mammals, species with smaller historical N e had lower genetic diversity, higher genetic load, and were more likely to be threatened with extinction. Genomic data were used to train models that predict whether a species is threatened, which can be valuable for assessing extinction risk in species lacking ecological or census data. [Animal silhouettes are from PhyloPic]
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...