GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (2)
Material
Publisher
  • American Association for the Advancement of Science (AAAS)  (2)
Language
Years
  • 1
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 13, No. 582 ( 2021-02-24)
    Abstract: Tumor-induced CD45 − Ter119 + CD71 + erythroid progenitor cells, termed “Ter cells,” promote tumor progression by secreting artemin (ARTN), a neurotrophic peptide that activates REarranged during Transfection (RET) signaling. We demonstrate that both local tumor ionizing radiation (IR) and anti–programmed death ligand 1 (PD-L1) treatment decreased tumor-induced Ter cell abundance in the mouse spleen and ARTN secretion outside the irradiation field in an interferon- and CD8 + T cell–dependent manner. Recombinant erythropoietin promoted resistance to radiotherapy or anti–PD-L1 therapies by restoring Ter cell numbers and serum ARTN concentration. Blockade of ARTN or potential ARTN signaling partners, or depletion of Ter cells augmented the antitumor effects of both IR and anti–PD-L1 therapies in mice. Analysis of samples from patients who received radioimmunotherapy demonstrated that IR-mediated reduction of Ter cells, ARTN, and GFRα3, an ARTN signaling partner, were each associated with tumor regression. Patients with melanoma who received immunotherapy exhibited favorable outcomes associated with decreased expression of GFRα3. These findings demonstrate an out-of-field, or “abscopal,” effect mediated by adaptive immunity, which is induced during local tumor irradiation. This effect, in turn, governs the therapeutic effects of radiation and immunotherapy. Therefore, our results identify multiple targets to potentially improve outcomes after radiotherapy and immunotherapy.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science Immunology, American Association for the Advancement of Science (AAAS), Vol. 6, No. 60 ( 2021-06-15)
    Abstract: Radiotherapy is an important anticancer treatment modality that activates innate and adaptive immune responses. When all-trans retinoic acid (RA) was administered with radiation, we observed superior antitumor responses compared with ionizing radiation (IR) alone or RA alone. The superior antitumor effects of combination treatment were accompanied by a marked increase of tumor necrosis factor–α– and inducible nitric oxide synthase–producing inflammatory macrophages in local and distal nonirradiated tumors. Inflammatory macrophages are essential for the therapeutic efficacy of combination treatment by inducing effector T cell infiltration and enhancing the effector T cell to regulatory T cell ratio in local and distal tumors. T cells and T cell–derived interferon-γ are crucial for increasing inflammatory macrophage levels in IR- and RA-treated tumors. Whereas CD8 + T cells are required for the antitumor response to IR, CD4 + T cells are required for the effectiveness of the IR + RA combination. Combination treatment with RA enhanced the abscopal response when radiation and programmed cell death-ligand 1 blockade were used together. The synergistic positive feedback loop of inflammatory macrophages and adaptive immunity is required for the antitumor efficacy of IR + RA combination treatment. Our findings provide a translational and relatively nontoxic strategy for enhancing the local and systemic antitumor effects of IR.
    Type of Medium: Online Resource
    ISSN: 2470-9468
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...