GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (7)
  • Biology  (7)
Material
Publisher
  • American Association for the Advancement of Science (AAAS)  (7)
Language
Years
Subjects(RVK)
RVK
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2023
    In:  Science Vol. 380, No. 6652 ( 2023-06-30), p. 1390-1396
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6652 ( 2023-06-30), p. 1390-1396
    Abstract: Observations of the bright gamma-ray burst GRB 221009A at tera–electron volt energies show that it contained a very narrow jet.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2021
    In:  Science Vol. 373, No. 6553 ( 2021-07-23), p. 425-430
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 373, No. 6553 ( 2021-07-23), p. 425-430
    Abstract: The Crab Nebula is a bright source of gamma rays powered by the Crab Pulsar’s rotational energy through the formation and termination of a relativistic electron-positron wind. We report the detection of gamma rays from this source with energies from 5 × 10 −4 to 1.1 peta–electron volts with a spectrum showing gradual steepening over three energy decades. The ultrahigh-energy photons imply the presence of a peta–electron volt electron accelerator (a pevatron) in the nebula, with an acceleration rate exceeding 15% of the theoretical limit. We constrain the pevatron’s size between 0.025 and 0.1 parsecs and the magnetic field to ≈110 microgauss. The production rate of peta–electron volt electrons, 2.5 × 10 36 ergs per second, constitutes 0.5% of the pulsar spin-down luminosity, although we cannot exclude a contribution of peta–electron volt protons to the production of the highest-energy gamma rays.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2021
    In:  Science Vol. 371, No. 6536 ( 2021-03-26), p. 1374-1378
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 371, No. 6536 ( 2021-03-26), p. 1374-1378
    Abstract: The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continually poses serious threats to global public health. The main protease (M pro ) of SARS-CoV-2 plays a central role in viral replication. We designed and synthesized 32 new bicycloproline-containing M pro inhibitors derived from either boceprevir or telaprevir, both of which are approved antivirals. All compounds inhibited SARS-CoV-2 M pro activity in vitro, with 50% inhibitory concentration values ranging from 7.6 to 748.5 nM. The cocrystal structure of M pro in complex with MI-23, one of the most potent compounds, revealed its interaction mode. Two compounds (MI-09 and MI-30) showed excellent antiviral activity in cell-based assays. In a transgenic mouse model of SARS-CoV-2 infection, oral or intraperitoneal treatment with MI-09 or MI-30 significantly reduced lung viral loads and lung lesions. Both also displayed good pharmacokinetic properties and safety in rats.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6640 ( 2023-04-07)
    Abstract: Hormones regulate most aspects of human physiology and are generally divided into four groups: protein and peptides, monoamines, steroids, and free fatty acids (FAs). Unsaturated FAs, those with C–C double bonds, exert physiological functions through engagement with membrane receptors, many of which are G protein–coupled receptors (GPCRs). Omega-3 (ω-3) FAs, which are a main component of fish oil, bind to the receptor GPR120, which mediates insulin sensitization, stimulates glucagon-like peptide 1 (GLP-1) secretion, and controls adipogenesis and anti-inflammatory effects through coupling to distinct downstream effectors, including the guanine nucleotide–binding (G) proteins G s , G i , and G q and β-arrestins. The association of the p.R270H missense mutation of GPR120 in obesity suggests therapeutic potential for GPR120 in the treatment of metabolic diseases. RATIONALE How natural fatty acid hormones—which are amphipathic molecules, distinguished mainly by number and position of double bonds—interact with GPCRs such as GPR120 has been unclear. Both saturated and unsaturated FAs are able to activate GPR120, but only certain unsaturated FAs are beneficial for metabolism. It is therefore important to understand whether GPR120 can recognize selective double-bond decorations in FAs and, if so, translate binding to specific biological signaling pathways, including different G protein subtypes and arrestins. The lack of GPCR structures in complex with natural fatty acid hormones and downstream effectors has hampered our understanding of double-bond recognition, which is one challenge in developing therapeutics that might act through this receptor. RESULTS By profiling G protein and arrestin activities of GPR120 stimulated by saturated and unsaturated endogenous FAs or the synthetic compound TUG891, we found that these molecules exhibited different biased signaling properties. In particular, only the beneficial ω-3 FAs were able to activate G s signaling. We determined six cryo–electron microscopy (cryo-EM) structures of GPR120-G i /G iq with 9-hydroxystearic acid (9-HSA), linoleic acid (LA), oleic acid (OA), the natural agonist ω-3 eicosapentaenoic acid (EPA), and the synthetic agonist TUG891. All fatty acid hormones and TUG891 assumed an overall “L” configuration and were buried inside the seven-transmembrane (7TM) helix bundle of the receptor. Through structural and mutational analysis, biochemical characterization, and molecular simulations, we identified aromatic residues in the ligand pocket of GPR120 that specifically recognize the C–C double bonds present in unsaturated FAs through π:π interactions and translate this recognition into different signaling outcomes. A propagating path connects the double-bond recognition of GPR120 inside the ligand pocket of the cytoplasmic side, and common and distinct features of G s and G q coupling interfaces were investigated. We also analyzed the structural basis for selectivity of TUG891 toward GPR120 and a disease-associated single-nucleotide polymorphism of GPR120. The separation of TUG891 into two regions by a linker oxygen suggests that fragment-based drug design could be exploited for GPR120 ligand design. CONCLUSION Our cryo-EM structures reveal how fatty acid hormones bind the orthosteric site within the 7TM domain of GPCRs and how specific aromatic residues inside the ligand pocket recognize the C–C double bonds. We also investigated mechanisms underlying signaling bias of GPR120 in response to various ligands. This work will serve as a foundation for the development of molecules that bind and activate GPR120 for potential therapeutic uses as well as to better understand how ligand-induced conformational changes bias signaling outcomes in GPRCs. Fish oil membrane receptor GPR120 recognizes different unsaturated FAs and couples to distinct downstream effectors. The membrane receptor GPR120 specifically recognizes the C–C double bonds present in unsaturated FAs, such as those in the ω-3 FAs found in fish oil, through π:π interactions. The interaction patterns of different FAs or ligands inside of the ligand pocket of GPR120 are translated into different signaling outcomes via distinct propagating paths. GLUT4, glucose transporter member 4; cAMP, cyclic adenosine monophosphate; TAK1, transforming growth factor-β–activated kinase 1; NLRP3, NLR family pyrin domain containing 3.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2002
    In:  Science Vol. 296, No. 5565 ( 2002-04-05), p. 79-92
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 296, No. 5565 ( 2002-04-05), p. 79-92
    Abstract: We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica , by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana . The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2002
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2017
    In:  Science Vol. 357, No. 6352 ( 2017-08-18), p. 695-699
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 357, No. 6352 ( 2017-08-18), p. 695-699
    Abstract: Although itch sensation is an important protective mechanism for animals, chronic itch remains a challenging clinical problem. Itch processing has been studied extensively at the spinal level. However, how itch information is transmitted to the brain and what central circuits underlie the itch-induced scratching behavior remain largely unknown. We found that the spinoparabrachial pathway was activated during itch processing and that optogenetic suppression of this pathway impaired itch-induced scratching behaviors. Itch-mediating spinal neurons, which express the gastrin-releasing peptide receptor, are disynaptically connected to the parabrachial nucleus via glutamatergic spinal projection neurons. Blockade of synaptic output of glutamatergic neurons in the parabrachial nucleus suppressed pruritogen-induced scratching behavior. Thus, our studies reveal a central neural circuit that is critical for itch signal processing.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2020
    In:  Science Vol. 369, No. 6504 ( 2020-08-07), p. 670-674
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 369, No. 6504 ( 2020-08-07), p. 670-674
    Abstract: Identifying two-dimensional layered materials in the monolayer limit has led to discoveries of numerous new phenomena and unusual properties. We introduced elemental silicon during chemical vapor deposition growth of nonlayered molybdenum nitride to passivate its surface, which enabled the growth of centimeter-scale monolayer films of MoSi 2 N 4 . This monolayer was built up by septuple atomic layers of N-Si-N-Mo-N-Si-N, which can be viewed as a MoN 2 layer sandwiched between two Si-N bilayers. This material exhibited semiconducting behavior (bandgap ~1.94 electron volts), high strength (~66 gigapascals), and excellent ambient stability. Density functional theory calculations predict a large family of such monolayer structured two-dimensional layered materials, including semiconductors, metals, and magnetic half-metals.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...