GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-25
    Description: The assessment of earthquake forecast models for practical purposes requires more than simply checking model consistency in a statistical framework. One also needs to understand how to construct the best model for specific forecasting applications. We describe a Bayesian approach to evaluating earthquake forecasting models, and we consider related procedures for constructing ensemble forecasts. We show how evaluations based on Bayes factors, which measure the relative skill among forecasts, can be complementary to common goodness-of-fit tests used to measure the absolute consistency of forecasts with data. To construct ensemble forecasts, we consider averages across a forecast set, weighted by either posterior probabilities or inverse log- likelihoods derived during prospective earthquake forecasting experiments. We account for model correlations by conditioning weights using the Garthwaite–Mubwandarikwa capped eigenvalue scheme. We apply these methods to the Regional Earthquake Like- lihood Models (RELM) five-year earthquake forecast experiment in California, and we discuss how this approach can be generalized to other ensemble forecasting applications. Specific applications of seismological importance include experiments being conducted within the Collaboratory for the Study of Earthquake Predictability (CSEP) and ensemble methods for operational earthquake forecasting.
    Description: Published
    Description: 2574 – 2584
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: earthquake forecasting ; ensemble model ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-25
    Description: We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Opera- tional earthquake forecasting (OEF) is the dissemination of authoritative information about these time-dependent proba- bilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazard—ground-motion exceedance probabilities as well as short-term rupture probabilities—in concert with the long-term forecasts of probabilistic seismic-hazard analysis (PSHA).
    Description: Published
    Description: 955-959
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: Operational earthquake forecasting ; seismic preparedness ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-23
    Description: Seismic hazard models are important for society, feeding into building codes and hazard mitigation efforts. These models, however, rest on many uncertain assumptions and are difficult to test observationally because of the long recurrence times of large earthquakes. Physics-based earthquake simulators offer a potentially helpful tool, but they face a vast range of fundamental scientific uncertainties. We compare a physics-based earthquake simulator against the latest seismic hazard model for California. Using only uniform parameters in the simulator, we find strikingly good agreement of the long-term shaking hazard compared with the California model. This ability to replicate statistically based seismic hazard estimates by a physics-based model cross-validates standard methods and provides a new alternative approach needing fewer inputs and assumptions for estimating hazard.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...