GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Deutsche Gesellschaft für Polarforschung | Alfred-Wegener-Institut für Polar- und Meeresforschung
    In:  Polarforschung, 80 (3). pp. 127-140.
    Publication Date: 2020-10-26
    Description: The water masses of the Arctic Ocean shelf regions are significantly influenced by river water and sea-ice processes. Since river water is highly depleted in ∂18O relative to marine waters as well as to sea-ice, the ∂18O composition and salinity of a water sample can be used to separate the different freshwater water sources. In this paper the distributions of river water, sea-ice melt water or sea-ice formation are discussed for the Kara, Laptev and Beaufort shelves based on ∂18O and salinity data. Depending on the average depth the observed fields of salinity and ∂18O values are different for each region. But comparing the overall ∂18O and salinity correlations reveals a remarkable similarity for these three Arctic shelf regions as similar local bottom-water masses are formed by sea-ice processes. Remnants of these seaice derived bottom water masses are found on all shelves during summer at a salinity of about 30. Investigations at the shelf break of the Kara Sea and Laptev Sea show that river water as well as brine waters are exported to the Arctic Ocean halocline. This export shows inter-annual variability in correlation with wind forcing during summer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2023-11-08
    Description: A detailed reconstruction of West African monsoon hydrology over the past 155,000 years suggests a close linkage to northern high-latitude climate oscillations. Ba/Ca ratio and oxygen isotope composition of planktonic foraminifera in a marine sediment core from the Gulf of Guinea, in the eastern equatorial Atlantic (EEA), reveal centennial-scale variations of riverine freshwater input that are synchronous with northern high-latitude stadials and interstadials of the penultimate interglacial and the last deglaciation. EEA Mg/Ca-based sea surface temperatures (SSTs) were decoupled from northern high-latitude millennial-scale fluctuation and primarily responded to changes in atmospheric greenhouse gases and low-latitude solar insolation. The onset of enhanced monsoon precipitation lags behind the changes in EEA SSTs by up to 7000 years during glacial-interglacial transitions. This study demonstrates that the stadial-interstadial and deglacial climate instability of the northern high latitudes exerts dominant control on the West African monsoon dynamics through an atmospheric linkage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...