GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 3919-3919
    Abstract: Introduction Circulating tumor cells (CTCs) can serve as a source of metastatic tumor material, however their low numbers often limit downstream applications. Diagnostic leukapheresis (DLA) has been shown to substantially increase CTC yield. In this study we isolated CTCs from metastatic prostate cancer (mPCa) patients by DLA to propagate them in vitro as organoid cultures. Furthermore, tumor-derived organoids were used as a model for drug discovery and sensitivity-screening, thereby exploring potential treatment selection. Methods We included 44 mPCa patients into the study and 18 were selected for DLA, based on the presence of ≥5 CTCs/ 7.5 mL blood. We optimized the DLA procedure by comparing low versus high density settings and their impact on CTC isolation efficacy. As the DLA product contains a median of 8.6*10^9 white blood cells (WBC), stringent enrichment methods are needed. CTC enrichment from DLA product was performed by antibody-based WBC depletion alone, or combined with subsequent EpCAM based enrichment. Enriched CTC fractions were cultured in vitro under optimized conditions, to initiate organoid expansion. Results We show that DLA is a safe and efficient method to collect large amounts of CTCs from mPCa patients. With optimized DLA settings we were able to improve CTC enrichment and observed a non-significant increase in CTC yield from DLA (median CTC recovery 15339 vs 5796, P=0.125). WBC depletion alone was found to reduce WBCs by ~2000-fold while retaining & gt;50% of the CTCs, resulting in a WBC to CTC ratio of 545:1. We were able to culture and confirm CTC-derived organoids in 9/18 samples, including one organoid cell line, EMC-PCa-41. Whole Genome Sequencing (WGS) of EMC-PCa-41 revealed a triploid genome characterized by focal amplification of AR, a TMPRSS2-ERG fusion, a PTEN deletion and multiple inter-chromosomal rearrangements. Next we determined copy number profiles in single CTCs and matched organoids from two patients using shallow WGS. These data confirm prior data that CTCs represent the inherent intra-patient heterogeneity and organoids resemble CTCs from the original DLA product. Moreover, we performed an in vitro drug screen with the organoid cell line EMC-PCa-41, and found that it has a limited response to Enzalutamide, which correlated with the relatively short response to Enzalutamide that was observed in the patient. Conclusion Overall our study demonstrates that DLA provides a high CTC yield which enables short-term organoid cultures that preserve the genomic hallmarks of prostate cancer. Viable CTCs obtained by DLA may serve as a (personalized) drug screening system in metastatic prostate cancer. Citation Format: Lisanne Mout, Lisanne F. van Dessel, Jaco Kraan, Anouk C. de Jong, Rui P. Neves, Sigrun Erkens-Schulze, Anieta M. Siewerts, Job van Riet, Ronald de Wit, Stefan Sleijfer, Paul Hamberg, Yorick Sandberg, Peter A. te Boekhorst, Harmen J. van de Werken, John W. Martens, Nikolas H. Stoecklein, Wytske M. van Weerden, Martijn P. Lolkema. Liquid biopsy derived organoids as a potential platform for personalized cancer therapy in metastatic prostate cancer [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 3919.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2015
    In:  Cancer Research Vol. 75, No. 15_Supplement ( 2015-08-01), p. 4141-4141
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 4141-4141
    Abstract: Tumor hypoxia, by elevating hypoxia-inducible factors (HIFs), is an established inducer of epithelial-to-mesenchymal transition (EMT) and subsequent cancer cell invasion and metastasis. Using epithelial carcinoma spheroids in 3D fibrillar collagen, we characterized the invasion patterns as well as cellular and molecular mechanisms of hypoxia-induced cancer cell migration modes. While epithelial cancer cells show collective invasion under normoxic conditions, hypoxia or pharmacological stabilization of HIF-1 using the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG) induced EMT-like detachment and migration of single cells. Besides mesenchymal movement, most epithelial cells converted to amoeboid migration with characteristic actin-rich filopodal or distinctive blebby protrusions towards the direction of migration. Whereas mesenchymal migrating cells moved with low velocities in a directionally persistent manner, amoeboid migrating cells generated a broad spectrum of low to high velocities, but with less persistent invasion paths. Sub-cellular molecular analysis showed typical amoeboid features particularly in hypoxic blebby single cell migration, including low to lacking collagen degradation along the migration path and insensitivity to broad-spectrum matrix metalloproteinase (MMP)-inhibitor GM6001, non-focalized cortical actin cytoskeleton within blebs that interacted with collagen structures and low-beta1 integrin expression with lack of integrin focalization. Thus, tumor hypoxia induces a diversity of single-cancer cell invasion modes, including blebby amoeboid migration, thereby enhancing predominantly MMP- and integrin-independent amoeboid dissemination in parallel to EMT induction. Citation Format: Steffi Lehmann, Veronika A M te Boekhorst, Julia Odenthal, Liying Jiang, Sjoerd van Helvert, Peter Friedl. Hypoxia-induced transition from collective to amoeboid single cell dissemination in epithelial cancer cells. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 4141. doi:10.1158/1538-7445.AM2015-4141
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...