GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
Material
Publisher
  • American Association for Cancer Research (AACR)  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 20 ( 2022-10-17), p. 3845-3857
    Abstract: Lenvatinib is an inhibitor of multiple receptor tyrosine kinases that was recently authorized for first-line treatment of hepatocellular carcinoma (HCC). However, the clinical benefits derived from lenvatinib are limited, highlighting the urgent need to understand mechanisms of resistance. We report here that HCC cells develop resistance to lenvatinib by activating EGFR and stimulating the EGFR–STAT3–ABCB1 axis. Lenvatinib resistance was accompanied by aberrant cholesterol metabolism and lipid raft activation. ABCB1 was activated by EGFR in a lipid raft–dependent manner, which significantly enhanced the exocytosis of lenvatinib to mediate resistance. Furthermore, clinical specimens of HCC showed a correlation between the activation of the EGFR–STAT3–ABCB1 pathway and lenvatinib response. Erlotinib, an EGFR inhibitor that has also been shown to inhibit ABCB1, suppressed lenvatinib exocytosis, and combined treatment with lenvatinib and erlotinib demonstrated a significant synergistic effect on HCC both in vitro and in vivo. Taken together, these findings characterize a mechanism of resistance to a first-line treatment for HCC and offer a practical means to circumvent resistance and treat the disease. Significance: HCC cells acquire resistance to lenvatinib by activating the EGFR–STAT3–ABCB1 pathway, identifying combined treatment with erlotinib as a strategy to overcome acquired resistance and improve the clinical benefit of lenvatinib.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 15, No. 5 ( 2016-05-01), p. 842-853
    Abstract: Lung cancer is a leading cause of cancer-related mortality worldwide, and concurrent chemoradiotherapy has been explored as a therapeutic option. However, the chemotherapeutic agents cannot be administered for most patients at full doses safely with radical doses of thoracic radiation, and further optimizations of the chemotherapy regimen to be given with radiation are needed. In this study, we examined the effects of suberoylanilide hydroxamic acid (SAHA) and cisplatin on DNA damage repairs, and determined the combination effects of SAHA and cisplatin on human non–small cell lung cancer (NSCLC) cells in response to treatment of ionizing radiation (IR), and on tumor growth of lung cancer H460 xenografts receiving radiotherapy. We also investigated the potential differentiation effect of SAHA and its consequences on cancer cell invasion. Our results showed that SAHA and cisplatin compromise distinct DNA damage repair pathways, and treatment with SAHA enhanced synergistic radiosensitization effects of cisplatin in established NSCLC cell lines in a p53-independent manner, and decreased the DNA damage repair capability in cisplatin-treated primary NSCLC tumor tissues in response to IR. SAHA combined with cisplatin also significantly increased inhibitory effect of radiotherapy on tumor growth in the mouse xenograft model. In addition, SAHA can induce differentiation in stem cell–like cancer cell population, reduce tumorigenicity, and decrease invasiveness of human lung cancer cells. In conclusion, our data suggest a potential clinical impact for SAHA as a radiosensitizer and as a part of a chemoradiotherapy regimen for NSCLC. Mol Cancer Ther; 15(5); 842–53. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...