GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (46)
Material
Publisher
  • American Association for Cancer Research (AACR)  (46)
Language
Years
Subjects(RVK)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 4 ( 2020-02-15), p. 719-731
    Abstract: The DNA damage response (DDR) is essential for maintaining genome integrity. Mounting evidence reveals that protein modifications play vital roles in the DDR. Here, we show that USP38 is involved in the DDR by regulating the activity of HDAC1. In response to DNA damage, USP38 interacted with HDAC1 and specifically removed the K63-linked ubiquitin chain promoting the deacetylase activity of HDAC1. As a result, HDAC1 was able to deacetylate H3K56. USP38 deletion resulted in persistent focal accumulation of nonhomologous end joining (NHEJ) factors at DNA damage sites and impaired NHEJ efficiency, causing genome instability and sensitizing cancer cells to genotoxic insults. Knockout of USP38 rendered mice hypersensitive to irradiation and shortened survival. In addition, USP38 was expressed at low levels in certain types of cancers including renal cell carcinoma, indicating dysregulation of USP38 expression contributes to genomic instability and may lead to tumorigenesis. In summary, this study identifies a critical role of USP38 in modulating genome integrity and cancer cell resistance to genotoxic insults by deubiquitinating HDAC1 and regulating its deacetylation activity. Significance: This study demonstrates that USP38 regulates genome stability and mediates cancer cell resistance to DNA-damaging therapy, providing insight into tumorigenesis and implicating USP38 as a potential target for cancer diagnosis.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 3732-3732
    Abstract: Expanding the paradigm of solid tumor profiling from single-gene testing to comprehensive panels presents many challenges. One such challenges is the ability of these panels to detect genetic alterations from FFPE samples, where the DNA is of low abundance and often heavily compromised. Despite these challenges, next-generation sequencing (NGS) offers the ability to assess multiple variants simultaneously in an ever-expanding list of relevant tumor genes. To that end, Illumina developed a comprehensive, hybrid capture-based NGS assay targeting 170 key cancer genes that is FFPE optimized. The assay consists of a DNA workflow for the identification of single and multiple nucleotide variants (SNVs, MNVs), small insertions and deletions (indels), gene amplifications, as well as a RNA workflow for the identification of splice variants and gene fusions. Following sequencing on the NextSeq® or HiSeq® instruments, the analytical pipeline initiates variant calling. The DNA aligner and variant callers were first optimized against the simulated read data from & gt;40,000 COSMIC[1] mutations reported in the exons of the 170 genes. To reduce false positive variant calling due to systematic errors, each variant call was evaluated against its locus specific background error distribution. This distribution was compiled from a panel of FFPE normal samples and was also used to normalize against systematic bias in read coverage to increase the accuracy of amplification calling. Furthermore, gene amplification calling was improved by the addition of enhancer probes to the hybrid capture pool. The analytical sensitivity and specificity of TruSight® Tumor 170* was assessed on a large collection of FFPE samples and reference material. A panel of 72 cancer samples, including multiple tissue types, reference standards, and cell line and FFPE mixes were used to evaluate the limit of detection. The samples contained 533 SNVs, 80 indels including deletions up to 30 base pairs and insertions up to 31 base pairs, 4 MNVs, and 31 gene amplifications, characterized by orthogonal testing methods. Using 40 ng DNA input, detection sensitivity of the & gt;1000 variants (including replicates) tested at variant allele frequencies down to ~5% was at 99.6%, while detection sensitivity of gene amplifications as low as 1.45x to 2.2x was at 98%. For limit of blank samples, a panel of 24 normal samples was used. Again using 40 ng DNA input, we show & gt;99% specificity for small variant calling and & gt;95% specificity for gene amplification calling. These data demonstrates the TruSight® Tumor 170 is able to detect multiple variant types within a single sample at low nucleic acid input, while exhibiting high analytical sensitivity and specificity for low allele fraction detection. [1] Forbes, et al. (2015) *For Research Use Only. Not for use in diagnostic procedures. Citation Format: Danny Chou, Xiao Chen, Austin Purdy, Li Teng, Byron Luo, Chen Zhao, Laurel Ball, Allan Castaneda, Katie Clark, Brian Crain, Anthony Daulo, Manh Do, Tingting Du, Sarah Dumm, Yonmee Han, Michael Havern, Chia-Ling Hsieh, Tingting Jiang, Suzanne Johansen, Scott Lang, Rachel Liang, Jennifer S. LoCoco, Jaime McLean, Yousef Nassiri, Jason Rostron, Jennifer Silhavy, June Snedecor, Natasha Talago, Kevin Wu, Clare Zlatkov, Ali Kuraishy, Karen Gutekunst, Sohela De Rozieres, Matthew Friedenberg, Han-Yu Chuang, Anne C. Jager. Analytical performance of TruSight® Tumor 170 on small nucleotide variations and gene amplifications using DNA from formalin-fixed, paraffin-embedded (FFPE) solid tumor samples [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3732. doi:10.1158/1538-7445.AM2017-3732
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 565-565
    Abstract: Recent studies have highlighted the importance of gene fusions and splice variants in solid tumor profiling1. Next-generation sequencing can be an effective means of detecting these alterations in FFPE samples using RNA rather than DNA, as a single chimeric RNA transcript could result from numerous alterations in DNA2. To that end, Illumina developed TruSight® Tumor 1703, a comprehensive, hybrid capture-based NGS assay targeting 170 key cancer genes. Along with a DNA workflow, the assay includes a RNA workflow for the identification of splice variants and gene fusions. Following sequencing on the NextSeq® or HiSeq® instruments, TruSight® Tumor 170 offers an analytical pipeline which initiates variant calling. These algorithms were first optimized against the simulated read data from & gt;350 fusions and splice variants reported in the RNA content of the gene panel. A hybrid approach of read alignment and assembly was used to enhance the fusion calling sensitivity. Deliberate filters were designed to reduce false positive calling from sequence homologs, polymerase read-through, or FFPE artifacts. For splice variant calling, a panel of FFPE non-cancerous samples were used to capture false positive mutation calls. With endogenous RNA splicing in cellular physiology, exon-boundary probes were added in the hybrid capture to enhance enrichment efficiency. To the best of our knowledge, there is not yet a standard definition for the limit of detection (LoD) in detecting gene fusions and splice variants from NGS data. We propose to define the LoD of a fusion calling and splice variant NGS panel as the lowest molecule count of a chimeric transcript that could be reliably detected with a sufficient number of supporting sequencing reads. To determine the LoD of TruSight® Tumor 170 using this definition, we mixed cell lines expressing a panel of known fusions and splice variants to measure the copy number of each chimeric transcript. Using these samples we examined the ability of the assay to confidently detect the alterations using 40 ng of RNA input. To demonstrate the analytical sensitivity and specificity of this NGS based assay, we compiled a panel of 49 mixed samples and validated the molecule count to be near the LoD of 5 copies per ng RNA input by PCR. The sensitivity was & gt;98% for fusions and 100% for splice variants. For understanding the limit of blank (LoB) of the assay, another panel of 40 samples not harboring fusions and splice variants was also assessed by TruSight® Tumor 170. These samples demonstrated a ~97% specificity for fusion calling and & gt;95% specificity for splice variant calling. These results indicate that the TruSight® Tumor 170 panel analysis can identify lowly expressed fusions and splice variants from a small amount of compromised RNA from solid tumor samples at high analytical sensitivity and specificity. 1 Klijn et al. (2015) 2 Maher et al. (2009) 3 For Research Use Only. Citation Format: Tingting Du, June Snedecor, Jennifer S. LoCoco, Xiao Chen, Laurel Ball, Allan Castaneda, Danny Chou, Katie Clark, Brian Crain, Anthony Daulo, Manh Do, Sarah Dumm, Yonmee Han, Mike Havern, Chia-Ling Hsieh, Tingting Jiang, Suzanne Johansen, Scott Lang, Rachel Liang, Jaime McLean, Yousef Nassiri, Austin Purdy, Jason Rostron, Jennifer Silhavy, Natasha Talago, Li Teng, Kevin Wu, Clare Zlatkov, Chen Zhao, Ali Kuraishy, Karen Gutekunst, Sohela De Rozieres, Matthew Friedenberg, Anne C. Jager, Han-Yu Chuang. Analytical performance of TruSight® Tumor 170 in the detection of gene fusions and splice variants using RNA from formalin-fixed, paraffin-embedded (FFPE) solid tumor samples [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 565. doi:10.1158/1538-7445.AM2017-565
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 5354-5354
    Abstract: Solid tumor profiling assays need to deliver accurate and consistent results in the face of decreased quality and quantity of nucleic acids extracted from FFPE samples. Understanding the performance of a particular solid tumor profiling assay with FFPE tissue is critical, but with limited and non-renewable samples available to most assay-developers, the sample number used to understand this performance can be small. TruSight® Tumor 1701 is an Illumina-developed comprehensive solid tumor profiling panel targeting 170 genes using DNA and RNA from FFPE samples. In order to confirm the robustness of the assay with FFPE tissue, 2310 FFPE samples were brought in-house and evaluated. Quantity of both DNA and RNA extraction were determined by various methods, including AccuClear™, Qubit™ and Quantifluor® fluourometric assays. Overall, & gt;95% of the samples achieved the minimum concentrations required for the TruSight® Tumor 170 assay. As a surrogate for DNA quality, we measured the amplification potential of the nucleic acid by assessing a ΔCq value using quantitative PCR after normalization to a fixed input mass. To assess RNA quality, we used the DV200 metric, which measures the percentage of RNA fragments & gt;200 nucleotides in length. We examined ΔCq and DV200 values across different tissues and didn’t find a significant difference between tissues. Finally, we assessed the ability of samples to pass the sample quality control (QC) metrics in the TruSight® Tumor 170 assay. These QC metrics ensure accurate variant calling, with a sensitivity and specificity of ≥95%. We found that samples that had a ΔCq value of ≤5 and a DV200 value of ≥20 achieved a QC success rate above 95%. This data highlights the need for further investigation into the methods for extraction, quantification and quality assessment of nucleic acids for solid tumor profiling and underscores the robustness of TruSight® Tumor 170 with FFPE samples. 1 For Research Use Only. Not for use in diagnostic procedures. Citation Format: Jennifer S. LoCoco, Li Teng, Danny Chou, Xiao Chen, Byron Luo, Jennifer Sayne, Ashley Adams, Naseem Ajili, Cody Chivers, Beena Murthy, Laurel Ball, Allan Castaneda, Katie Clark, Brian Crain, Anthony Daulo, Manh Do, Tingting Du, Sarah Dumm, Yonmee Han, Michael Havern, Chia-Ling Hsieh, Tingting Jiang, Suzanne Johansen, Scott Lang, Rachel Liang, Jaime McLean, Yousef Nassiri, Austin Purdy, Jason Rostron, Jennifer Silhavy, June Snedecor, Natasha Talago, Li Teng, Kevin Wu, Chen Zhao, Clare Zlatkov, Ali Kuraishy, Karen Gutekunst, Sohela De Rozieres, Matthew Friedenberg, Han-Yu Chuang, Anne C. Jager. Evaluation of quantity, quality and performance with the TruSight® Tumor 170 solid tumor profiling assay of nucleic acids extracted from formalin-fixed paraffin-embedded (FFPE) tissue sections [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 5354. doi:10.1158/1538-7445.AM2017-5354
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 6603-6603
    Abstract: Background: BRCA1 promoter methylation (PM) is an early initiating event in cancer, occurring in 3 to 65.2% of all breast tumors, and 30 to 65% of triple negative tumors. BRCA1 PM has been associated with defective homologous recombination repair (HRR), early onset of breast and ovarian cancer, and improved clinical response to adjuvant chemotherapy. Historically, there has been no diagnostic assay that comprehensively evaluates both BRCA1 PM and genomic alterations in cell-free circulating tumor DNA (ctDNA). Here, we describe the novel detection of BRCA1 PM and genomic alterations in a cohort of patients with breast cancer using GuardantINFINITY, a liquid biopsy assay interrogating 800+ genes and genome-wide methylation detection. Method: We assessed for BRCA1 PM in ctDNA from 274 patients with late-stage breast cancer. Genomic sequencing of 800+ genes and PM profiling of 398 genes was performed by GuardantINFINITY. The positive calling threshold for PM was established by comparing cell-free DNA derived from patients with cancer and cancer-free donors. The limit of detection (LoD) was determined through in silico and experimental titrations of ctDNA from clinical samples and cell lines with known gene PM into the plasma of cancer-free donors. Results: Among the 274 patients with advanced breast cancer, 8 (2.9%) had germline pathogenic mutations in BRCA1, BRCA2, or ATM. BRCA1 PM was detected in 11/274 (4.0%) patients at the predefined threshold of & gt;99% specificity. BRCA1 PM detection in this cohort was 8.9% (8/90) when excluding samples with low tumor shedding ( & lt;1% epigenomic tumor fraction in cfDNA). Among the 11 patients with BRCA1 PM detected in ctDNA, one had a co-occurring somatic BRCA1 nonsense variant (p.S361*); none of the remaining patients with BRCA1 PM had another HRR-related mutation detected in cfDNA. Among patients without BRCA1 PM detected, pathogenic somatic alterations were detected in BRCA2, ATM, and CHEK2 in 25 (9.4%) patients. In silico simulations using clinical samples with BRCA1 PM indicated an LoD of 0.0408%. BRCA1 PM was not detected in 3210 individual and mixed cancer-free clinical samples, indicating a high specificity for BRCA1 PM calls. Conclusion: GuardantINFINITY, a plasma-based diagnostic assay, detected both BRCA1 PM and genomic alterations in this unspecified advanced breast cancer cohort. The BRCA1 PM detection rates of 4.0-8.9% are consistent with values previously reported in the literature. As BRCA1 PM has important prognostic and therapeutic implications for the management of breast (as well as ovarian) cancers, additional studies are warranted to further describe the PM patterns across breast cancer subtypes and how these patterns both influence and are influenced by disease evolution and therapeutic response. Liquid biopsy thus serves as a suitable method to noninvasively identify and monitor changes in both genomics and epigenomics. Citation Format: Jennifer Yen, Sai Chen, Colby Jenkins, Brooke Overstreet, Yu Fu, Jun Zhao, Tingting Jiang, Leylah Drusbosky, Stephen Pettitt, Michael Dorschner, Lauren Lawrence, Han-Yu Chuang, Andrew Tutt. BRCA1 promoter methylation in sporadic breast cancer patients detected by liquid biopsy [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 6603.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 3091-3091
    Abstract: Myc is an oncogenic transcription factor frequently dysregulated in human malignancies. While the transcriptional programs and other functions of Myc have been intensively studied, there remains no effective strategy for inhibiting Myc in patients. To search for pathways that support the Myc oncogenic program, we employed a next-generation RNAi screen for Myc-synthetic lethal (MySL) genes. Using this strategy, we have identified several cellular processes required to tolerate oncogenic Myc. Key among these is the core sumoylation machinery, and we define the Sumo-activating enzyme (SAE) as a central component in this MySL network. Loss of SAE drives synthetic lethality with Myc, and the enzymatic activity of SAE is required to support the Myc oncogenic state. Inactivation of SAE leads to mitotic catastrophe and cell death selectively upon Myc hyper-activation. Mechanistically, depletion of SAE switches a subprogram of Myc transcriptional targets governing mitotic spindle function from activated to repressed, a subprogram we term Sumoylation-dependent Myc Switchers, or SMS genes. Notably, SMS genes are required to tolerate Myc hyper-activation, and SAE and the SMS program are required for Myc-dependent breast cancer cell survival in vitro and tumor growth and progression in vivo. Importantly, patient survival significantly correlates with levels of SAE and SMS gene expression in Myc-high tumors. Collectively, these studies reveal a mitotic vulnerability of Myc-driven cancers and demonstrate that inhibiting sumoylation can selectively impair mitosis and survival in an oncogenic Myc-dependent manner. We propose that drugs targeting SAE and its downstream SMS targets may have therapeutic benefits for patients with Myc-driven cancer. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3091. doi:1538-7445.AM2012-3091
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 3123-3123
    Abstract: Background: Circulating tumor DNA (ctDNA) level and the change in level at a subsequent time point (e.g. on-treatment change from baseline or postoperative changes through time) are promising tools for predicting patient prognosis and response to therapy. Existing methods use somatic variant allele frequencies to quantify circulating tumor fractions (cTF). Their performance can be limited by the number of detectable somatic alterations and the associated limit of detection (LoD), as well as interference from copy number variation and non-tumor alterations, such as clonal hematopoiesis. Here, we describe the LoD, precision and limit of quantitation (LoQ) of cTF level and change using GuardantINFINITY, a next generation sequencing panel covering over 800 genes with genome-wide methylation detection. Method: The cTF of a single sample is estimated from methylation signals across targeted regions of the GuardantINFINITY methylation panel, calibrated using internal training data. cTF change compares two or more samples from the same patient to identify patient-specific methylated regions, and compare the methylation signals of the paired regions. LoQ of cTF level and change were assessed in experimental titrations of advanced colorectal, breast, and lung cancer patient samples and cell line samples into cancer-free backgrounds at different target levels between 0.1%-0.5% cTF. LoD is defined as the lowest cTF level where & gt;95% replicates were detected to have tumor-derived methylation signals. LoQ of cTF level or change is defined as the lowest cTF where the coefficient of variation (CV) across replicates is less than 30%. Accuracy of methylation based cTF compared to cTFs calculated from maximum VAF of somatic mutations was assessed on 1,400 clinical samples of colorectal and lung cancer patients (N=189, 372, 252 and 463 for stage I to IV). Results: Experimental titrations of cancer samples demonstrated a single-sample LoD of 0.05% cTF (lowest dilution level) and quantitative precision down to a LoQ of below 0.1%, compared to the LoQ of 0.3% estimated by somatic mutations. In paired clinical titration samples, the LoQ of methylation ctDNA level change was also below 0.1%, compared to the LoQ of ctDNA level change estimated by somatic mutations at 0.3-0.5%. In the 1,400 clinical samples, 64% had at least one somatic mutation detected, 90% had ct-DNA detected with methylation and 96% of these ct-DNA detected samples had cTF above the defined methylation LoQ. Among patients with both methylation and genomic signals identified, the methylation method quantified a similar cTF to those that were calculated using maximum somatic driver mutations (Pearson r=0.83). Conclusion: Methylome sequencing using GuardantINFINITY enables accurate and precise quantification of ctDNA level and change with a liquid-only approach, offering longitudinal ctDNA monitoring for more patients than previous methods. Citation Format: Sai Chen, Katie Quinn, Che-Yu Lee, Jun Zhao, Kyle Chang, Tingting Jiang, Shile Zhang, Carin Espenschied, Sara Wienke, Thereasa Rich, Indira Wu, Yvonne Kim, Xianxian Liu, Nageswara Alla, Dustin Ma, Giao Tran, Han-Yu Chuang. A method for quantifying circulating tumor DNA level and molecular response using methylome sequencing [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 3123.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 10, No. 6 ( 2020-06-01), p. 783-791
    Abstract: The novel COVID-19 outbreak has affected more than 200 countries and territories as of March 2020. Given that patients with cancer are generally more vulnerable to infections, systematic analysis of diverse cohorts of patients with cancer affected by COVID-19 is needed. We performed a multicenter study including 105 patients with cancer and 536 age-matched noncancer patients confirmed with COVID-19. Our results showed COVID-19 patients with cancer had higher risks in all severe outcomes. Patients with hematologic cancer, lung cancer, or with metastatic cancer (stage IV) had the highest frequency of severe events. Patients with nonmetastatic cancer experienced similar frequencies of severe conditions to those observed in patients without cancer. Patients who received surgery had higher risks of having severe events, whereas patients who underwent only radiotherapy did not demonstrate significant differences in severe events when compared with patients without cancer. These findings indicate that patients with cancer appear more vulnerable to SARS-CoV-2 outbreak. Significance: Because this is the first large cohort study on this topic, our report will provide much-needed information that will benefit patients with cancer globally. As such, we believe it is extremely important that our study be disseminated widely to alert clinicians and patients. This article is highlighted in the In This Issue feature, p. 747
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 21 ( 2017-11-01), p. 5755-5768
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 21 ( 2017-11-01), p. 5755-5768
    Abstract: Onset of castration-resistance prostate cancer (CRPC) after long-term androgen deprivation therapy remains a major obstacle in the treatment of prostate cancer. The peptidylarginine deiminase PADI2 has been implicated in chronic inflammatory diseases and cancer. Here we show that PADI2 is an androgen-repressed gene and is upregulated in CRPC. PADI2 expression was required for survival and cell-cycle progression of prostate cancer cells, and PADI2 promoted proliferation of prostate cancer cells under androgen-deprived or castration conditions in vitro and in vivo. Cytoplasmic PADI2 protected the androgen receptor (AR) against proteasome-mediated degradation and facilitated AR binding to its target genes after nuclear translocation and citrullination of histone H3 amino acid residue R26. In contrast, mutant PADI2 D180A failed to affect AR stability, nuclear translocation, or transcriptional activity. PADI2 mediated AR control in a manner dependent on its enzymatic activity and nuclear localization, as correlated with increased histone H3 citrullination. Notably, coadministration of the PADI inhibitor Cl-Amidine and the AR signaling inhibitor enzalutamide synergized in inhibiting CRPC cell proliferation in vitro and tumor growth in vivo. Overall, our results establish PADI2 as a key mediator for AR in prostate cancer progression, especially CRPC, and they suggest PADI as novel therapeutic targets in this disease setting. Cancer Res; 77(21); 5755–68. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 13_Supplement ( 2017-07-01), p. 3139-3139
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 3139-3139
    Abstract: Precision oncology requires identifying and understanding of cancer genome changes in a patient tumor tissue and finding the best cancer therapy targeting the changes. Although many cancer gene targets have been validated so far, next-generation genomic profile analyses have uncovered much more cancer gene variants with unconfirmed functions. Developing methods to functionally evaluate mutations/variants and understand their roles in cancer development and drug responses, such as drug resistance or synthetic lethality, will be critical in cancer treatment decision support. In addition, in some clinical cases, multiple treatment choices such as multiple drug combinations exist. Developing cancer models which can test multiple treatments will provide direct comparison of those therapies and select the best options. At GenenDesign, we have performed drug tests on mouse “avatars”, which are also known as Patient-Derived Xenograft (PDX) models. They are personalized cancer models derived from patient tumor samples with cancer mutation profiles and drug responses very similar to the corresponding cancer patients. Drug screenings were carried out in avatars by testing chemotherapies or targeted drugs against specific cancer gene mutations and variants. Selected drugs or drug combinations from avatar studies have been applied to corresponding patients with highly consistent treatment outcome. From genomic profile analysis of our near 1500 PDX tumor models in cancer types such as lung, colorectal, gastric, liver, and esophageal, we are able to identify a large number of cancer gene mutations/variants, gene fusions, as well as gene copy number and RNA expression changes in major cancer signal pathways such as EGFR, Her2, c-Met/ALK, Ras/Raf, FGFRs, PI3K/Akt, Wnt, Notch, DNA repair, cell cycle regulation, angiogenesis. Many of these gene aberrations are potential drug targets and have been functionally tested in PDX models with approved drugs or clinical drug candidates. The mutation/variant information and drug response information generated from PDX models have been organized into our Precision Cancer Information Lab database. Patient tumor DNA test results have been used for searching genetically matched PDX models in our database. Once matched PDX models are identified, the available drug response information can be used as evidence for clinical treatment decision. In addition, the matched PDX models can also been used to test more treatment options such as different combinations and new clinical drug candidates. Citation Format: Jingjing Jiang, Tengfei Yu, Ying Yan, Wei Du, Tingting Tan, Xuqin Yang, Jiali Gu, Ling Qiu, Xin K. Ye, Zhenyu Gu. In vivo functional analyses of cancer gene variants for cancer driver identification and drug discovery [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3139. doi:10.1158/1538-7445.AM2017-3139
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...