GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (6)
  • 1
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 10, No. 12 ( 2020-12-01), p. 1826-1841
    Abstract: Tumor genotyping is not routinely performed in localized non–small cell lung cancer (NSCLC) due to lack of associations of mutations with outcome. Here, we analyze 232 consecutive patients with localized NSCLC and demonstrate that KEAP1 and NFE2L2 mutations are predictive of high rates of local recurrence (LR) after radiotherapy but not surgery. Half of LRs occurred in tumors with KEAP1/NFE2L2 mutations, indicating that they are major molecular drivers of clinical radioresistance. Next, we functionally evaluate KEAP1/NFE2L2 mutations in our radiotherapy cohort and demonstrate that only pathogenic mutations are associated with radioresistance. Furthermore, expression of NFE2L2 target genes does not predict LR, underscoring the utility of tumor genotyping. Finally, we show that glutaminase inhibition preferentially radiosensitizes KEAP1-mutant cells via depletion of glutathione and increased radiation-induced DNA damage. Our findings suggest that genotyping for KEAP1/NFE2L2 mutations could facilitate treatment personalization and provide a potential strategy for overcoming radioresistance conferred by these mutations. Significance: This study shows that mutations in KEAP1 and NFE2L2 predict for LR after radiotherapy but not surgery in patients with NSCLC. Approximately half of all LRs are associated with these mutations and glutaminase inhibition may allow personalized radiosensitization of KEAP1/NFE2L2-mutant tumors. This article is highlighted in the In This Issue feature, p. 1775
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 3140-3140
    Abstract: BRAFV600E mutations have recently been identified in nearly 100% of patients with the chronic lymphoproliferative disorder hairy cell leukemia (HCL), as well as a small percentage of patients with the plasma cell malignancy multiple myeloma. Despite extensive knowledge regarding the functional effects of BRAFV600E expression in epithelial tissues, very little is understood about the role of the BRAFV600E mutation in hematopoietic transformation. We therefore utilized a conditional BRafV600E murine model crossed with Mx1-cre, Vav-cre, Cd19-cre, and Cγ1-cre transgenic mice to delineate the effects of mutant BRaf expression in pre-natal and post-natal hematopoietic stem and progenitor cells (HSPCs), B-lineage cells, and germinal center B cells respectively. We also investigated the origin of the BRAFV600E mutation in HCL patient bone marrow samples using prospective isolation of sorted HSPC populations followed by quantitative sequencing for the BRAFV600E mutation. Surprisingly, we identified the presence of the BRAFV600E mutation in long-term hematopoietic stem cells of HCL patients, and we also observed marked alterations in HSPC frequencies. Consistent with the human genetic data, expression of BRafV600E in HSPCs of mice resulted in a lethal transplantable hematopoietic disorder characterized by splenomegaly, anemia, thrombocytopenia, increased circulating soluble CD25, and increased clonogenic capacity of B-lineage cells- all classic features of human HCL. In contrast, restricting expression of BRafV600E to B-lineage cells did not result in disease even up to 1.5 years of age. We next assessed the effects of the BRafV600E mutation on HSPC self-renewal and lineage specification. We plated whole BM cells from Mx1-cre BRafV600E mice in methylcellulose containing myeloid/erythroid cytokines or lymphopoietic cytokes (IL-7). BRafV600E cells demonstrated impaired colony formation in myeloid/erythroid conditions. However, BRafV600E HSPCs exhibited limitless replating capacity when plated in the presence of IL-7, indicating that the BRAF mutation induces aberrant B lineage cell self-renewal. A clear competitive advantage was also seen with competitive transplantation of BRafV600E BM cells, identifying an increase in HSPC self-renewal associated with the BRAF mutation. Data from the murine models studied here and characterization of the BM compartment in HCL patients suggest that the cytopenias seen in HCL patients are due in part to HSPC-intrinsic effects of the BRAFV600E mutation on erythropoiesis, megakarypoiesis, and myelopoiesis. Moreover, these data suggest that the use of therapies targeting MAP-kinase signaling in HCL may lead to durable remissions not only through effects on mature leukemic cells, but also through targeted inhibition of signaling and survival in mutant HSPCs. Citation Format: Eunhee Kim, Stephen S. Chung, Jae H. Park, Young Rock Chung, Piro Lito, Julie Feldstein, Wenhuo Hu, Wendy Beguilin, Sebastien Monette, Cihangir Duy, Raajit Rampal, Leon Telis, Minal Patel, Min Kyung Kim, Ari M. Melnick, Neal Rosen, Martin S. Tallman, Christopher Y. Park, Omar Abdel-Wahab. Context specific effects of the BRAFV600E mutation on hematopoiesis identifies novel models of BRAF mutant hematopoietic disorders. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 3140. doi:10.1158/1538-7445.AM2014-3140
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 20, No. 24 ( 2014-12-15), p. 6551-6558
    Abstract: Purpose: Targetable oncogenic alterations are detected more commonly in patients with non–small cell lung cancer (NSCLC) who never smoked cigarettes. For such patients, specific kinase inhibitors have emerged as effective clinical treatments. However, the currently known oncogenic alterations do not account for all never smokers who develop NSCLC. We sought to identify additional oncogenic alterations from patients with NSCLC to define additional treatment options. Experimental Design: We analyzed 576 lung adenocarcinomas from patients of Asian and Caucasian ethnicity. We identified a subset of cancers that did not harbor any known oncogenic alteration. We performed targeted next-generation sequencing (NGS) assay on 24 patients from this set with & gt;75% tumor cell content. Results: EGFR mutations were the most common oncogenic alteration from both Asian (53%) and Caucasian (41.6%) patients. No known oncogenic alterations were present in 25.7% of Asian and 31% of Caucasian tumor specimens. We identified a FGFR3–TACC3 fusion event in one of 24 patients from this subset using targeted NGS. Two additional patients harboring FGFR3–TACC3 were identified by screening our entire cohort (overall prevalence, 0.5%). Expression of FGFR3–TACC3 led to IL3 independent growth in Ba/F3 cells. These cells were sensitive to pan-fibroblast growth factor receptor (pan-FGFR) inhibitors but not the epidermal growth factor (EGFR) inhibitor gefitinib. Conclusions: FGFR3–TACC3 rearrangements occur in a subset of patients with lung adenocarcinoma. Such patients should be considered for clinical trials featuring FGFR inhibitors. Clin Cancer Res; 20(24); 6551–8. ©2014 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 5666-5666
    Abstract: Although treatment of non-small cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICI) can produce remarkably durable responses, most patients develop early disease progression. Furthermore, initial response assessment by conventional imaging is often unable to identify which patients will achieve durable clinical benefit (DCB). Here, we analyze 211 samples from 99 patients and demonstrate that pre-treatment circulating tumor DNA (ctDNA) and circulating immune profiles are independently associated with DCB. We further show that ctDNA dynamics after a single ICI infusion can identify the majority of patients who will achieve DCB. Integrating these determinants, we describe an entirely noninvasive multi-analyte assay (DIREct-On, Durable Immunotherapy Response Estimation by immune profiling and ctDNA- On-treatment) that robustly predicted DCB, and that was validated in two independent cohorts (AUC = 0.89-0.93, PPV = 92-100%, HR = 0.04-0.11). Taken together, these results demonstrate that integrated ctDNA and circulating immune cell profiling can provide accurate, noninvasive, and early forecasting of ultimate outcomes for NSCLC patients receiving ICI. Citation Format: Barzin Y. Nabet, Mohammad S. Esfahani, Emily G. Hamilton, Jacob J. Chabon, Everett J. Moding, Hira Rizvi, Chloe B. Steen, Aadel A. Chaudhuri, Chih Long Liu, Angela B. Hui, Henning Stehr, Linda Goljenola, Michael C. Jin, Young-Jun Jeon, Diane Tseng, Taha Merghoub, Joel W. Neal, Heather A. Wakelee, Sukhmani K. Padda, Kavitha J. Ramchandran, Millie Das, Rene F. Bonilla, Christopher Yoo, Emily L. Chen, Ryan B. Ko, Aaron M. Newman, Matthew D. Hellmann, Ash A. Alizadeh, Maximilian Diehn. A noninvasive approach for early prediction of therapeutic benefit from immune checkpoint inhibition for lung cancer [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 5666.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 8_Supplement ( 2021-04-15), p. PO-059-PO-059
    Abstract: Background: We previously reported that approximately half of local recurrences (LR) after radiotherapy for localized NSCLC harbor mutations in KEAP1 or NFE2L2. Here we sought to explore factors associated with LR after radiotherapy in KEAP1/NFE2L2 wildtype NSCLC. Methods: We identified consecutive patients with stage IA1-IIIC NSCLC treated at our institution with chemoradiotherapy (CRT) or stereotactic ablative radiotherapy (SABR) from 2009-2018 and who had genotyping performed on tumor tissue with full coverage of common recurrent lung cancer driver genes including TP53, KRAS, KEAP1, and NFE2L2. We defined LR as tumor regrowth within the prescription dose radiotherapy volume. Our primary objective was to identify factors associated with LR in KEAP1/NFE2L2WT tumors. We performed RNA-seq on a subset of cases with available tissue using the SMARTer Stranded total RNA-seq Kit v2 (Takara Bio USA, Inc.). Statistical analysis was performed using R (version 3.6) with differential gene expression performed using ‘DESeq2’. All P-values were two-sided and considered significant at P & lt;0.05 with adjustment for multiple hypothesis testing when appropriate. Results: We identified 139 consecutive patients with localized NSCLC who received tumor genotyping and were treated with CRT for stage IIB-IIIC NSCLC (n=58) or SABR for stage I-IIB NSCLC (n=81). 26 (18.7%) of these patients harbored KEAP1/NFE2L2WT tumors. Clinical factors such as tumor volume (P=0.18), histology (P=0.87), and radiation dose (P=0.3) were not associated with LR in this subset. Similarly, somatic mutation analysis did not reveal association of any recurrent driver mutations with LR in these KEAP1/NFE2L2WT tumors, including in TP53 (n=19; P=0.73) or KRAS (n=9; P=0.98). Tissue was available for RNA-seq analysis of 38 KEAP1/NFE2L2WT tumors, of which the majority were adenocarcinomas (n=25, 65.8%) and approximately half each received CRT (n=20, 52.6%) and SABR (n=18, 47.4%). Gene set enrichment analysis revealed a trend for association of LR with expression of hypoxia genes (P=0.07, Q=0.28). Similarly, a previously reported 10-gene radiation sensitivity index (RSI) was not associated with LR (P=0.34). Individual gene analysis identified KRT14 as being significantly less expressed in cases with LR (adjusted P=2.2e-9). In a validation cohort of 24 stage I-IIA KEAP1/NFE2L2WT patients from the TCGA who were treated with radiotherapy, those who died had lower expression of KRT14 than those who did not (P=0.0003). Conclusions: In summary, we identify low expression of KRT14, a squamous cell carcinoma differentiation gene, as a potential biomarker for increased risk of LR after definitive radiotherapy of KEAP1/NFE2L2WT NSCLC. Validation in larger cohorts and biological characterization will be required to determine if this biomarker could be useful for guiding precision radiotherapy approaches. Citation Format: Michael S. Binkley, Young-Jun Jeon, Monica Nesselbush, Everett J. Moding, Barzin Nabet, Diego Almanza, Christopher Yoo, David M. Kurtz, Susie Grant Owen, Leah M. Backhus, Mark F. Berry, Joseph B. Shrager, Kavitha J. Ramchandran, Sukhmani K. Padda, Millie Das, Joel W. Neal, Heather A. Wakelee, Ash A. Alizadeh, Billy W. Loo, Maximilian Diehn. Investigating gene expression profiles associated with clinical radiation resistance in KEAP1/NFE2L2 wildtype lung cancer [abstract]. In: Proceedings of the AACR Virtual Special Conference on Radiation Science and Medicine; 2021 Mar 2-3. Philadelphia (PA): AACR; Clin Cancer Res 2021;27(8_Suppl):Abstract nr PO-059.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 7 ( 2020-04-01), p. 1428-1437
    Abstract: Genomic rearrangements leading to the aberrant expression of ERG are the most common early events in prostate cancer and are significantly enriched for the concomitant loss of PTEN. Genetically engineered mouse models reveal that ERG overexpression alone is not sufficient to induce tumorigenesis, but combined loss of PTEN results in an aggressive invasive phenotype. Here, we show that oncogenic ERG repressed PI3K signaling through direct transcriptional suppression of IRS2, leading to reduced RTK levels and activity. In accordance with this finding, ERG-positive human prostate cancers had a repressed AKT gene signature and transcriptional downregulation of IRS2. Although overexpression of IRS2 activated PI3K signaling, promoting cell migration in a PI3K-dependent manner, this did not fully recapitulate the phenotype seen with loss of PTEN as PI3K signaling is not as robust as observed in the setting of loss of PTEN. Importantly, deletions of the PTEN locus, which promotes active PI3K signaling, were among the most significant copy-number alterations that co-occurred with ERG genomic rearrangements. This work provides insight on how initiating oncogenic events may directly influence the selection of secondary concomitant alterations to promote oncogenic signaling during tumor evolution. Significance: This work provides insight on how initiating oncogenic events may directly influence the selection of secondary concomitant alterations to promote tumorigenesis.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...