GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. 3327-3327
    Abstract: Altered glycosylation is a key hallmark of tumor cells; still, the role of individual glycosyltransferases remains unclear. ST6Gal-I is a tumor-associated sialyltransferase which catalyzes the addition of a sialic acid sugar to substrate glycoproteins. Addition of the negatively-charged sialic acid by ST6Gal-I has been shown to alter receptor conformation, clustering, and surface retention, leading to changes in downstream signaling. In this study we assayed ST6Gal-I by immunohistochemistry and report the great majority of patient ovarian and pancreatic tumors express this enzyme. In contrast, the normal epithelium expresses minimal ST6Gal-I. Enzyme expression in ovarian cancers is enriched during metastasis and correlates with worse progression-free and overall survival. Recent evidence points to ST6Gal-I activity in stem/progenitor cells. In light of this, we investigated whether ST6Gal-I functionally promotes a cancer stem cell (CSC) phenotype, i.e. resistance to chemotherapy, survival as tumorspheroids, and ability to initiate tumors. We previously reported that ST6Gal-I activity confers resistance to cisplatin; we now show its activity additionally confers resistance to gemcitabine in pancreatic tumor cells. ST6Gal-I expressing cells are enriched in patient derived xenografts (PDX) treated with gemcitabine suggesting that these cells preferentially survive chemotherapy in vivo. In addition to chemoresistance, ST6Gal-I promotes the growth of pancreatic and ovarian cell lines in tumorspheroid culture. Moreover, ST6Gal-I expressing primary tumor cells isolated from ovarian cancer ascites or PDX tumors survive in tumorspheroid culture, whereas ST6Gal-I negative cells do not. Conversely, forced expression of ST6Gal-I protects tumor cells exposed to the ascites fluid milieu in vitro, while non-ST6Gal-I expressing cells succumb to this inflammatory environment. In a limiting dilution tumor initiating assay, ST6Gal-I expressing cells have a higher tumor incidence and form larger tumors compared to cells with ST6Gal-I knockdown. We next created a conditional mouse model with forced ST6Gal-I expression in the intestinal tract and used AOM-DSS chemically-induced carcinogenesis model to evaluate tumor formation. Compared with wildtype mice, ST6Gal-I knock-in mice have a greater tumor burden, evidenced by increased tumor number and area. As a novel mechanistic link beteween ST6Gal-I and the CSC phenotype, direct modulation of ST6Gal-I levels in tumor cells regulates the expression of stem-related transcription factors, Sox9 and Slug, implicated in tumor progression. The finding that a distinct glycosyltransferase governs the expression of key transcription factors highlights the tumor glycome as a driving factor in CSC behavior. Citation Format: Matthew J. Schultz, Andrew T. Holdbrooks, Asmi Chakraborty, William E. Grizzle, Charles N. Landen, Donald J. Buchsbaum, Michael G. Conner, Rebecca C. Arend, Karina J. Yoon, Chris A. Klug, Daniel C. Bullard, Robert A. Kesterson, Patsy G. Oliver, Amber K. O’Connor, Bradley K. Yoder, Susan L. Bellis. The tumor associated sialyltransferase ST6Gal-I promotes a cancer stem cell phenotype and upregulates stem-related transcription factors. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 3327.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 13 ( 2016-07-01), p. 3978-3988
    Abstract: The glycosyltransferase ST6Gal-I, which adds α2-6–linked sialic acids to substrate glycoproteins, has been implicated in carcinogenesis; however, the nature of its pathogenic role remains poorly understood. Here we show that ST6Gal-I is upregulated in ovarian and pancreatic carcinomas, enriched in metastatic tumors, and associated with reduced patient survival. Notably, ST6Gal-I upregulation in cancer cells conferred hallmark cancer stem-like cell (CSC) characteristics. Modulating ST6Gal-I expression in pancreatic and ovarian cancer cells directly altered CSC spheroid growth, and clonal variants with high ST6Gal-I activity preferentially survived in CSC culture. Primary ovarian cancer cells from patient ascites or solid tumors sorted for α2-6 sialylation grew as spheroids, while cells lacking α2-6 sialylation remained as single cells and lost viability. ST6Gal-I also promoted resistance to gemcitabine and enabled the formation of stably resistant colonies. Gemcitabine treatment of patient-derived xenograft tumors enriched for ST6Gal-I–expressing cells relative to pair-matched untreated tumors. ST6Gal-I also augmented tumor-initiating potential. In limiting dilution assays, subcutaneous tumor formation was inhibited by ST6Gal-I knockdown, whereas in a chemically induced tumor initiation model, mice with conditional ST6Gal-I overexpression exhibited enhanced tumorigenesis. Finally, we found that ST6Gal-I induced expression of the key tumor-promoting transcription factors, Sox9 and Slug. Collectively, this work highlighted a previously unrecognized role for a specific glycosyltransferase in driving a CSC state. Cancer Res; 76(13); 3978–88. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...