GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
Material
Publisher
  • American Association for Cancer Research (AACR)  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 2650-2650
    Abstract: We have developed AGS67E, an antibody drug conjugate that targets CD37, a tetraspanin highly expressed on malignant B cells, for the potential treatment of non-Hodgkin's lymphoma (NHL), chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). AGS67E is a fully human anti-CD37 monoclonal IgG2 antibody conjugated to the potent microtubule-disrupting agent, MMAE, via reduced cysteines and the protease cleavable linker, maleimidocaproyl-valine-citrulline-p-aminobenzoyloxycarbonyl. AGS67E exhibits potent in vitro binding, internalization and cytotoxicity on a variety of NHL, CLL and AML models and patient-derived samples, including CD34+CD38- leukemic stem cells. AGS67E also demonstrates potent anti-tumor responses, including complete tumor regressions in a variety of NHL, CLL and AML xenografts, including Rituxan refractory models and patient-derived samples. In general, CD37 was highly expressed across all models and a strong correlation was observed between the in vitro and in vivo efficacy of AGS67E. To confirm binding of AGS67E in a variety of normal and patient-derived NHL, CLL and AML samples, we developed flow cytometry and immunohistochemistry (IHC) assays which have confirmed reported CD37 expression data in NHL & CLL. In normal hematopoietic cells, AGS67E bound strongly to B cells and to a much lesser extent to monocytes, T cells, neutrophils and NK cells. AGS67E also bound with high and similar affinity to cynomolgus monkey B cells and was equally cytotoxic to these and human B cells. In other normal tissues, AGS67E binding was only evident where lymphoid structures were apparent such as in the spleen and lymph node. With respect to CD37 expression in NHL, CLL and AML, AGS67E was found to bind to & gt;80% of NHL and 100% of CLL and AML samples. Taken together, our findings suggest that AGS67E may serve as a potential therapeutic for NHL, CLL and AML. To our knowledge, this body of work is also the first demonstration that CD37 is well expressed and potentially drug-able in AML. Citation Format: Daniel S. Pereira, Claudia Guevara, Alla Verlinsky, Cyrus Virata, J Hsu Ssucheng, Zili An, Chungying Zhang, Nick Dinh, Hector Avina, Lisa Do, Sher Karki, Joseph Abad, Peng Yang, Jimmy Ou, Karen Morrison, Sing-Ju Moon, Faisal Malik, Liqing Jin, Michael Choi, Christina Wu, Banmeet Anand, Scott Cooper, Ingrid Joseph, Xiao-Chi Jia, Kendall Morrison, Pia Challita-Eid, Fernando Donate, Thomas Kipps, John Dick, David Stover. Ags67e, an anti-cd37 monomethyl auristatin e antibody (mmae) drug conjugate as a potential therapeutic for non-hodgkin's lymphoma, chronic lymphocytic leukemia and acute myeloid leukemia. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2650. doi:10.1158/1538-7445.AM2014-2650
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2021
    In:  Clinical Cancer Research Vol. 27, No. 8_Supplement ( 2021-04-15), p. IA-003-IA-003
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 8_Supplement ( 2021-04-15), p. IA-003-IA-003
    Abstract: Severe hypoxia causes resistance to conventional chemotherapy and has been reported to synergize with PARP inhibitors (PARPi) through suppression of homologous recombination (HR). While this synergistic killing is true at oxygen levels less than 0.5%, our study shows that less severe hypoxia (e.g. 2% oxygen) is instead associated with resistance to PARPi in HR proficient cells. Interestingly, we demonstrate that HR deficient hypoxic tumors are significantly less responsive to PARPi, due to limited ROS-induced intrinsic DNA damage. To determine the contribution of hypoxic cells to PARPi, we used the hypoxic cytotoxin Tirapazamine to target hypoxic tumor cells. We found that the elimination of hypoxic tumor cells by Tirapazamine led to a substantial antitumor response with PARPi compared to PARPi treated tumors alone, without enhancing normal tissue toxicity. These studies indicate that tumor hypoxia reduces the efficacy of PARPi to tumor cells and that eliminating hypoxic tumor cells will enhance the efficacy of PARPi therapy. Citation Format: Manal Mehibel, Jimmy Xu, Grace Li, Jung Moon, Kaushik Thakkar, Anh Diep, Ryan Kim, Joshua Bloomstein, Siren Xiao, Julien Bacal, Joshua Saldivar, Quynh Le, Karlene Cimprich, Erinn Rankin, Amato Giaccia. Oxygen dependent resistance to PARP inhibitors [abstract]. In: Proceedings of the AACR Virtual Special Conference on Radiation Science and Medicine; 2021 Mar 2-3. Philadelphia (PA): AACR; Clin Cancer Res 2021;27(8_Suppl):Abstract nr IA-003.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...