GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • 1
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 7, No. 1 ( 2009-01-01), p. 88-98
    Abstract: The mammalian target of rapamycin (mTOR) regulates cellular growth and proliferation, mainly by controlling cellular translation. Most tumors show constitutive activation of the mTOR pathway. In hypoxia, mTOR is inactivated, which is believed to be part of the program of the cell to maintain energy homeostasis. However, certain proteins are believed to be preferentially translated during hypoxia via 5′ terminal oligopyrimidine tract mechanisms with controversial discussion about the involvement of the mTOR-dependent ribosomal protein S6 (rpS6). The hypoxia-inducible transcription factor (HIF) is the master regulator of hypoxic adaptation and itself strongly implicated in tumor growth. HIF is translationally regulated by mTOR. The regulatory features and the involvement of molecular oxygen itself in this regulation of HIF by mTOR are poorly understood. mTOR inhibition leads to profound attenuation of HIFα protein in the majority of primary and cancer cells studied. Under severe hypoxia, no influence of mTOR inhibitors was observed; thus, stimulation of HIFα by mTOR may only be relevant under mild hypoxia or even normoxia. HIF expression and phosphorylated rpS6 negatively correlate in experimental tumors. In cell culture, prolonged hypoxia abolishes rpS6 phosphorylation, which seems to be partly independent of the upstream p70S6 kinase. We show that hypoxic repression of rpS6 is largely dependent on HIF, implicating a negative feedback loop, which may influence cellular translational rates and metabolic homeostasis. These data implicate that the hypoxic microenvironment renders tumor cells resistant to mTOR inhibition, at least concerning hypoxic gene activation, which would add to the difficulties of other established therapeutic strategies in hypoxic cancer tissues. (Mol Cancer Res 2009;7(1):88–98)
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2009
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 65, No. 11 ( 2005-06-01), p. 4598-4606
    Abstract: Following treatment with a demethylating agent, 5 of 11 renal cell carcinoma (RCC) cell lines showed increased expression of hepatocyte growth factor (HGF) activator inhibitor type 2 (HAI-2/SPINT2/Bikunin), a Kunitz-type protease inhibitor that regulates HGF activity. As activating mutations in the MET proto-oncogene (the HGF receptor) cause familial RCC, we investigated whether HAI-2/SPINT2 might act as a RCC tumor suppressor gene. We found that transcriptional silencing of HAI-2 in RCC cell lines was associated with promoter region methylation and HAI-2/SPINT2 protein expression was down-regulated in 30% of sporadic RCC. Furthermore, methylation-specific PCR analysis revealed promoter region methylation in 30% (19 of 64) of clear cell RCC and 40% (15 of 38) of papillary RCC, whereas mutation analysis (in 39 RCC cell lines and primary tumors) revealed a missense substitution (P111S) in one RCC cell line. Restoration of HAI-2/SPINT2 expression in a RCC cell line reduced in vitro colony formation, but the P111S mutant had no significant effect. Increased cell motility associated with HAI-2/SPINT2 inactivation was abrogated by treatment with extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phospholipase C-γ inhibitors, but not by an inhibitor of atypical protein kinase C. These findings are consistent with frequent epigenetic inactivation of HAI-2/SPINT2, causing loss of RCC tumor suppressor activity and implicate abnormalities of the MET pathway in clear cell and papillary sporadic RCC. This information provides opportunities to develop novel targeted approaches to the treatment of RCC.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2005
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...