GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (59)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3712-3712
    Abstract: Spontaneous tumors in pet dogs represent a valuable but undercharacterized cancer model. To better use this resource, we performed an initial global comparison between proliferative and invasive colorectal tumors from 20 canine cases and evaluated their molecular homology to human colorectal cancer (CRC). We sequenced 15 canine intestinal samples for WGS and 26 for RNA-seq. We investigated alterations in the genome and transcriptome, using state-of-the-art analysis tools. We aslso investigated their microbiome, by mapping WGS and RNA-seq read pairs that could not be placed onto the canine genome to two microbial genome databases: The Human Microbiome Project database and all bacterial genomic sequences. We performed the same analysis with TCGA (The Cancer Genome Atlas) colon cancer data. Based on our analysis, proliferative canine tumors harbor overactivated WNT/β-catenin pathways and recurrent CTNNB1 (β-catenin) mutations S45F/P, D32Y and G34E. Invasive canine tumors harbor prominent fibroblast proliferation and overactivated stroma. Both groups have recurrent TP53 mutations. We observed three invasion patterns in canine tumors: collective, crypt-like and epithelial-mesenchymal transition (EMT). We detected enriched Helicobacter bilis and Alistipes finegoldii in proliferative and crypt-like tumors, but depleted mucosa-microbes in the EMT tumor. Additionally, guided by our canine findings, we classified 79% of 478 human colon cancers from TCGA into four subtypes: primarily proliferative, or with collective, crypt-like or EMT invasion features. Their molecular characteristics match those of canine tumors. We showed that consensus molecular subtype 4 (mesenchymal) of human CRC should be further divided into EMT and crypt-like subtypes, which differ in TGF-β activation and mucosa-microbe content. Our canine tumors share the same pathogenic pathway as human CRCs. Dog-human integration identifies three CRC invasion patterns and improves CRC subtyping. Citation Format: Jin Wang, Tianfang Wang, Yanfang Sun, Yuan Feng, William C. Kisseberth, Carolyn J. Henry, Irene Mok, Susan E. Lana, Kevin Dobbin, Nicole Northrup, Elizabeth W. Howerth, Shaying Zhao, Houjian Cai. Proliferative and invasive colorectal tumors in pet dogs provide unique insights into human colorectal cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3712.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 15 ( 2023-08-01), p. 2572-2583
    Abstract: Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Gene-environment interactions (G × E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G × E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G × E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G × E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant G×BMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer. Significance: This gene-environment interaction analysis revealed a genetic locus in FMN1/GREM1 that interacts with body mass index in colorectal cancer risk, suggesting potential implications for precision prevention strategies.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 12 ( 2021-12-01), p. 3008-3027
    Abstract: Genomic studies of pediatric cancer have primarily focused on specific tumor types or high-risk disease. Here, we used a three-platform sequencing approach, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-seq), to examine tumor and germline genomes from 309 prospectively identified children with newly diagnosed (85%) or relapsed/refractory (15%) cancers, unselected for tumor type. Eighty-six percent of patients harbored diagnostic (53%), prognostic (57%), therapeutically relevant (25%), and/or cancer-predisposing (18%) variants. Inclusion of WGS enabled detection of activating gene fusions and enhancer hijacks (36% and 8% of tumors, respectively), small intragenic deletions (15% of tumors), and mutational signatures revealing of pathogenic variant effects. Evaluation of paired tumor–normal data revealed relevance to tumor development for 55% of pathogenic germline variants. This study demonstrates the power of a three-platform approach that incorporates WGS to interrogate and interpret the full range of genomic variants across newly diagnosed as well as relapsed/refractory pediatric cancers. Significance: Pediatric cancers are driven by diverse genomic lesions, and sequencing has proven useful in evaluating high-risk and relapsed/refractory cases. We show that combined WGS, WES, and RNA-seq of tumor and paired normal tissues enables identification and characterization of genetic drivers across the full spectrum of pediatric cancers. This article is highlighted in the In This Issue feature, p. 2945
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 642-642
    Abstract: Clinical genomic studies of pediatric cancer have primarily focused on specific tumor types or high-risk disease. In the Genomes for Kids study (NCT02530658) we used a three-platform sequencing approach, including whole genome (WGS), whole exome (WES) and RNA sequencing, to examine tumor and paired germline genomes from prospectively identified children with cancer. The goal of the study was to assess the potential of comprehensive next generation sequencing to elucidate the molecular mechanisms underlying tumor formation and investigate the potential of this information to influence clinical decision-making.The cohort, with a median age of 6 yrs, range 0 - 26 yrs, included 301 patients with newly diagnosed (85%) or relapsed/refractory (15%) cancers, unselected for tumor type or stage. Patients with hematologic malignancies accounted for 41% of cases, 31% had CNS tumors, and 28% had other non-CNS solid tumors. This cohort also included 18 patients with very rare tumor types, defined here as occurring in less than 2 cases per million person per year.Two hundred fifty three patients (84%) had sufficient tumor for three-platform sequencing and all 301 had adequate paired germline samples. Following analysis, 86% of patients harbored diagnostic (53%), prognostic (57%), therapeutically relevant (25%), and/or cancer predisposing (18%) variants. The inclusion of WGS enabled detection of oncogenic gene fusions, as well as 22 cases in which oncogenes were activated through enhancer hijacking, a particularly frequent occurrence in hematologic malignancies. In addition, WGS effectively detected clinically relevant small intragenic deletions (15% of tumors) and a variety of mutational signatures, which were not detectable through analysis of whole exome data. Evaluation of 56 pathogenic germline variants in the context of paired tumor sequence data helped establish the disease relevance of several genes that are not typically associated with the cancer type in question, providing critical insights on a case-by-case basis. Examples include a pathogenic germline variant in MUTYH in a patient with retinoblastoma whose tumor exhibited a mutation signature associated with reactive oxygen species indicative of loss of MUTYH function; and conversely, a likely pathogenic variant in PMS2 in a rare brain cancer, which did not exhibit a mutation signature associated with microsatellite instability. This study successfully demonstrated the power of this three-platform approach to interrogate and interpret the full range of genomic variants across newly diagnosed as well as relapsed/refractory pediatric cancers. As a result of these findings, we have incorporated this three-platform approach into our routine real-time clinical service at St. Jude Children's Hospital. Citation Format: David A. Wheeler, Scott Newman, Joy Nakitandwe, Chimene A. Kesserwan, Elizabeth M. Azzato, Michael C. Rusch, Sheila Shurtleff, Armita Bahrami, Brent Orr, Jeffery M. Klco, Dale J. Hedges, Kayla V. Hamilton, Scott G. Foy, Michael N. Edmonson, Andrew Thrasher, Jiali Gu, Lynn W. Harrison, Lu Wang, Roya Mostafavi, Manish Kubal, Jamie Maciaszek, Michael Clay, Annastasia Ouma, Antonina Silkov, Yanling Liu, Zhaojie Zhang, Yu Liu, Samuel W. Brady, Xin Zhou, Mark Wilkinson, Delaram Rahbarinia, Jay Knight, Jian Wang, Charles G. Mullighan, Rose B. McGee, Emily A. Quinn, Elsie L. Gerhardt, Leslie M. Taylor, Regina Nuccio, Jessica M. Valdez, Stacy J. Hines-Dowell, Alberto Pappo, Giles Robinson, Liza-Marie Johnson, Ching-Hon Pui, David W. Ellison, James R. Downing, Jinghui Zhang, Kim E. Nichols. Genomes for Kids: Comprehensive DNA and RNA sequencing defining the scope of actionable mutations in pediatric cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 642.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 16 ( 2017-08-15), p. 4704-4715
    Abstract: Purpose: Androgen receptor (AR) variant AR-V7 is a ligand-independent transcription factor that promotes prostate cancer resistance to AR-targeted therapies. Accordingly, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The purpose of this study was to understand whether other AR variants may be coexpressed with AR-V7 and promote resistance to AR-targeted therapies. Experimental Design: We utilized complementary short- and long-read sequencing of intact AR mRNA isoforms to characterize AR expression in CRPC models. Coexpression of AR-V7 and AR-V9 mRNA in CRPC metastases and circulating tumor cells was assessed by RNA-seq and RT-PCR, respectively. Expression of AR-V9 protein in CRPC models was evaluated with polyclonal antisera. Multivariate analysis was performed to test whether AR variant mRNA expression in metastatic tissues was associated with a 12-week progression-free survival endpoint in a prospective clinical trial of 78 CRPC-stage patients initiating therapy with the androgen synthesis inhibitor, abiraterone acetate. Results: AR-V9 was frequently coexpressed with AR-V7. Both AR variant species were found to share a common 3′ terminal cryptic exon, which rendered AR-V9 susceptible to experimental manipulations that were previously thought to target AR-V7 uniquely. AR-V9 promoted ligand-independent growth of prostate cancer cells. High AR-V9 mRNA expression in CRPC metastases was predictive of primary resistance to abiraterone acetate (HR = 4.0; 95% confidence interval, 1.31–12.2; P = 0.02). Conclusions: AR-V9 may be an important component of therapeutic resistance in CRPC. Clin Cancer Res; 23(16); 4704–15. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 14 ( 2018-07-15), p. 4086-4096
    Abstract: A growing number of loci within the human leukocyte antigen (HLA) region have been implicated in non-Hodgkin lymphoma (NHL) etiology. Here, we test a complementary hypothesis of “heterozygote advantage” regarding the role of HLA and NHL, whereby HLA diversity is beneficial and homozygous HLA loci are associated with increased disease risk. HLA alleles at class I and II loci were imputed from genome-wide association studies (GWAS) using SNP2HLA for 3,617 diffuse large B-cell lymphomas (DLBCL), 2,686 follicular lymphomas (FL), 2,878 chronic lymphocytic leukemia/small lymphocytic lymphomas (CLL/SLL), 741 marginal zone lymphomas (MZL), and 8,753 controls of European descent. Both DLBCL and MZL risk were elevated with homozygosity at class I HLA-B and -C loci (OR DLBCL = 1.31, 95% CI = 1.06–1.60; OR MZL = 1.45, 95% CI = 1.12–1.89) and class II HLA-DRB1 locus (OR DLBCL = 2.10, 95% CI = 1.24–3.55; OR MZL = 2.10, 95% CI = 0.99–4.45). Increased FL risk was observed with the overall increase in number of homozygous HLA class II loci (P trend & lt; 0.0001, FDR = 0.0005). These results support a role for HLA zygosity in NHL etiology and suggests that distinct immune pathways may underly the etiology of the different NHL subtypes. Significance: HLA gene diversity reduces risk for non-Hodgkin lymphoma. Cancer Res; 78(14); 4086–96. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 5545-5545
    Abstract: Immunotherapies such as anti-CTLA-4 immune checkpoint blockade (ICB) have revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by off-target tissue damage or immune-related adverse events (irAEs). At present, there is limited understanding of irAE mechanisms, hampering development of approaches to mitigate their damage. We addressed this problem by generating animal models of intestinal irAE. Our results show that disruption of homeostatic immunity by genetic predisposition to intestinal inflammation or acute gastrointestinal infection sensitizes mice to anti-CTLA-4-mediated intestinal toxicity. Inflammation-prone mice treated with anti-CTLA-4 showed neutrophil accumulation, systemic interleukin-6 (IL-6) release, and dysbiosis. Significantly, IL-6 blockade combined with antibiotic treatment improved anti-CTLA-4 therapeutic efficacy and reduced intestinal irAEs. Immune signatures were validated in biopsies from patients who developed colitis during ICB, supporting the utility of our models. This study provides new pre-clinical models, mechanistic insight into irAEs, and potential approaches to enhance ICB efficacy while mitigating irAEs. Citation Format: Yifan Zhou, Yusra B. Medik, Bhakti Patel, Daniel B. Zamler, Sijie Chen, Thomas Chapman, Sarah Schneider, Rachel L. Babcock, Taylor T. Chrisikos, Laura M. Kahn, Allison M. Dyevoich, Elizabeth M. Park, Alexandria P. Cogdill, Daniel H. Johnson, Sarah B. Johnson, Khalida M. Wani, Debora A. Ledesma, Courtney W. Hudgens, Jingjing Wang, Md Abdul Wadud Khan, Aron Y. Joon, Weiyi Peng, Haiyan S. Li, Reetakshi Arora, Ximing Tang, Maria Gabriela Raso, Xuegong Zhang, Wai Chin Foo, Michael T. Tetzlaff, Gretchen E. Diehl, Karen Clise-Dwyer, Elizabeth M. Whitley, Matthew M. Gubin, James P. Allison, Patrick Hwu, Nadim J. Ajami, Adi Diab, Jennifer A. Wargo, Stephanie S. Watowich. Intestinal toxicity to CTLA-4 blockade driven by IL-6 and myeloid infiltration [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5545.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 5, No. 1 ( 2015-01-01), p. 43-51
    Abstract: We examined the immune microenvironment of primary colorectal cancer using immunohistochemistry, laser capture microdissection/qRT-PCR, flow cytometry, and functional analysis of tumor-infiltrating lymphocytes. A subset of colorectal cancer displayed high infiltration with activated CD8+ cytotoxic T lymphocyte (CTL) as well as activated Th1 cells characterized by IFNγ production and the Th1 transcription factor TBET. Parallel analysis of tumor genotypes revealed that virtually all of the tumors with this active Th1/CTL microenvironment had defects in mismatch repair, as evidenced by microsatellite instability (MSI). Counterbalancing this active Th1/CTL microenvironment, MSI tumors selectively demonstrated highly upregulated expression of multiple immune checkpoints, including five—PD-1, PD-L1, CTLA-4, LAG-3, and IDO—currently being targeted clinically with inhibitors. These findings link tumor genotype with the immune microenvironment, and explain why MSI tumors are not naturally eliminated despite a hostile Th1/CTL microenvironment. They further suggest that blockade of specific checkpoints may be selectively efficacious in the MSI subset of colorectal cancer. Significance: The findings reported in this article are the first to demonstrate a link between a genetically defined subtype of cancer and its corresponding expression of immune checkpoints in the tumor microenvironment. The mismatch repair–defective subset of colorectal cancer selectively upregulates at least five checkpoint molecules that are targets of inhibitors currently being clinically tested. Cancer Discov; 5(1); 43–51. ©2014 AACR. See related commentary by Xiao and Freeman, p. 16 This article is highlighted in the In This Issue feature, p. 1
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 10, No. 3 ( 2020-03-01), p. 406-421
    Abstract: Hodgkin lymphoma is characterized by an extensively dominant tumor microenvironment (TME) composed of different types of noncancerous immune cells with rare malignant cells. Characterization of the cellular components and their spatial relationship is crucial to understanding cross-talk and therapeutic targeting in the TME. We performed single-cell RNA sequencing of more than 127,000 cells from 22 Hodgkin lymphoma tissue specimens and 5 reactive lymph nodes, profiling for the first time the phenotype of the Hodgkin lymphoma–specific immune microenvironment at single-cell resolution. Single-cell expression profiling identified a novel Hodgkin lymphoma–associated subset of T cells with prominent expression of the inhibitory receptor LAG3, and functional analyses established this LAG3+ T-cell population as a mediator of immunosuppression. Multiplexed spatial assessment of immune cells in the microenvironment also revealed increased LAG3+ T cells in the direct vicinity of MHC class II–deficient tumor cells. Our findings provide novel insights into TME biology and suggest new approaches to immune-checkpoint targeting in Hodgkin lymphoma. Significance: We provide detailed functional and spatial characteristics of immune cells in classic Hodgkin lymphoma at single-cell resolution. Specifically, we identified a regulatory T-cell–like immunosuppressive subset of LAG3+ T cells contributing to the immune-escape phenotype. Our insights aid in the development of novel biomarkers and combination treatment strategies targeting immune checkpoints. See related commentary by Fisher and Oh, p. 342. This article is highlighted in the In This Issue feature, p. 327
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. LB-215-LB-215
    Abstract: Introduction: Trastuzumab is an iconic example of rationally designed targeted therapy for HER2-positive breast cancers; however, trastuzumab resistance is a imposing clinical challenge that calls for novel approaches to better benefit patients. The purpose of this study was to find alternative combinatorial targeted therapies to overcome trastuzumab resistance. Methods: We used two distinct PTEN-loss mediated trastuzumab resistant mammary tumor mouse models. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and Akt inhibitor triciribine (TCN) were applied alone or in combination with 7.16.4 antibody, the mouse equivalent of the trastuzumab, for the treatment of tumor-bearing mice. Immunoblotting, immunohistochemistry, in vivo cytotoxicity assay and quantitative real time PCR were employed to dissect the in vivo effects of the treatments and molecular changes. Results: Concomitant targeting of tumor cells with Akt inhibitor TCN plus trastuzumab, and activation of T cells with anti-CTLA-4 antibody in the tumor microenvironment results in a synergistic inhibitory effect on tumor growth and overcomes trastuzumab resistance in both mammary tumor mouse models. In vivo combinatorial treatment with the 7.16.4 HER2/Neu antibody and TCN effectively inhibited tumor growth in both models via inhibiting PI3K/AKT and MAPK signaling accompanied by increased T cell infiltration in the tumor microenvironment. We demonstrated that both CD8+ and CD4+ T cells were essential to the optimal antitumor effect of the combination treatment in an IFN-γ-dependent manner. Importantly, the antitumor activities of HER2/Neu antibody and TCN combination treatment were further improved when we blocked co-inhibitory receptor cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) to enhance the T cell response. Conclusion: Our data indicate that multi-targeted combinatorial therapies targeting tumor cells and concomitantly enhancing T-cell response in the tumor microenvironment cooperated to exert maximal therapeutic activity. We propose that concomitant targeting tumor cells and tumor microenvironment is a promising clinical strategy for treating trastuzumab-resistant breast cancers and other advanced malignancies. Citation Format: Qingfei Wang, Shau-Hsuan Li, Hai Wang, Yi Xiao, Ozgur Sahin, Samuel W. Brady, Ping Li, Elizabeth M. Jaffee, Gabriel N. Hortobagyi, Dihua Yu. Concomitant targeting of tumor cells and induction of T cell response synergizes to effectively inhibit trastuzumab-resistant breast cancer. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr LB-215. doi:10.1158/1538-7445.AM2013-LB-215
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...