GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (65)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 5442-5442
    Abstract: Antibody-drug conjugates (ADCs) are hybrid biotherapeutics that combine the targeting specificity of monoclonal antibodies with chemically conjugated, highly potent small molecule chemotherapeutics. Using established research scale approaches, the amount of antibody material needed to prepare candidate ADCs far exceeds the quantities required for initial in vitro screening. The need to scale up production across many antibodies slows down early lead selection efforts and wastes material. We have therefore developed methods for conjugating multiple antibodies with ADC payloads in parallel at the 50-150 μg scale in 96-well plates. Pilot reactions show that antibodies can be titrated to different final drug:antibody ratios (DARs) with different payloads, and that differences in pH can alter the reaction kinetics with useful effects. We show that 96-well centrifugal ultrafiltration enables highly parallel ADC purification while maintaining the rigorous removal of residual cytotoxic impurities observed with more established methods such as gel filtration chromatography. In addition, we describe characterization of microscale ADCs using a single chromatographic assay requiring ∼5 μg of material. The resulting platform reduces the required input quantity of antibody required for in vitro ADC screening by at least 5-10 fold. It also enables much higher conjugation throughput with concomitant decrease in time needed to generate and characterize ADCs. To assess the utility of the platform for ranking candidate antibodies, we compare in vitro cytotoxicity results for a panel of ADCs produced by both microscale and research scale methods. We also present three example screens in which antibody libraries of 10-85 members against different targets were conjugated using microscale methods and the resulting ADCs ranked by in vitro potency. For each antibody library, the screen size, conjugation conditions, and target DAR range were adjusted to suit the target biology, antibody type,and payload class. For example, we present evidence suggesting that, for targets in which functional antibody activity is not observed, normalization of DAR to the 2-6 range is adequate for screening. Across the screens, the success rates for producing ADC in quantity and quality suitable for screening were in the 75-90% range, using 200-600 μg of input antibody. Cytotoxic potencies ranging over 2-3 orders of magnitude were observed in the resulting ADC libraries, suggesting that microscale conjugation can rapidly focus ADC discoverycampaigns on high potency molecules. For early stage antibody and ADC screening efforts, we find that microscale conjugation methods yield ADCs that can substitute for traditionally prepared conjugates. We expect these methods will be applicable across many different ADC targets and payloads, and possibly applicable more generally to conjugated macromolecule therapeutic or diagnostic reagents. Citation Format: Nicholas C. Yoder, Kalli C. Catcott, Molly A. McShea, Carl Uli Bialucha, Parmita Saxena, Chen Bai, Kathy L. Miller, Thomas G. Gesner, Mikias Woldegiorgis, Stuart W. Hicks, Megan E. Lewis, Michael S. Fleming, Hans K. Erickson, Seth E. Ettenberg, Thomas A. Keating. Microscale methods for preparation and screening of antibody-drug conjugates. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 5442. doi:10.1158/1538-7445.AM2015-5442
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 21, No. 7 ( 2022-07-05), p. 1047-1059
    Abstract: ADAM metallopeptidase domain 9 (ADAM9) is a member of the ADAM family of multifunctional, multidomain type 1 transmembrane proteins. ADAM9 is overexpressed in many cancers, including non–small cell lung, pancreatic, gastric, breast, ovarian, and colorectal cancer, but exhibits limited expression in normal tissues. A target-unbiased discovery platform based on intact tumor and progenitor cell immunizations, followed by an IHC screen, led to the identification of anti-ADAM9 antibodies with selective tumor-versus-normal tissue binding. Subsequent analysis revealed anti-ADAM9 antibodies were efficiently internalized and processed by tumor cells making ADAM9 an attractive target for antibody–drug conjugate (ADC) development. Here, we describe the preclinical evaluation of IMGC936, a novel ADC targeted against ADAM9. IMGC936 is comprised of a high-affinity humanized antibody site-specifically conjugated to DM21-C, a next-generation linker-payload that combines a maytansinoid microtubule-disrupting payload with a stable tripeptide linker, at a drug antibody ratio of approximately 2.0. In addition, the YTE mutation (M252Y/S254T/T256E) was introduced into the CH2 domain of the antibody Fc to maximize in vivo plasma half-life and exposure. IMGC936 exhibited cytotoxicity toward ADAM9-positive human tumor cell lines, as well as bystander killing, potent antitumor activity in human cell line-derived xenograft and patient-derived xenograft tumor models, and an acceptable safety profile in cynomolgus monkeys with favorable pharmacokinetic properties. Our preclinical data provide a strong scientific rationale for the further development of IMGC936 as a therapeutic candidate for the treatment of ADAM9-positive cancers. A first-in-human study of IMGC936 in patients with advanced solid tumors has been initiated (NCT04622774).
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 645-645
    Abstract: As with any therapeutic molecule, antibody-drug conjugates (ADCs) exhibit structure-activity relationships, and medicinal chemistry efforts in this field strive to optimize structure to give the maximum therapeutic index. Recent interest in ADCs as cancer therapy has led to a number of different combinations of linker, payload, and conjugation chemistry.In particular, site-specific methods of payload conjugation have been suggested to generally improve therapeutic properties as compared with more established approaches directed toward lysines or endogenous cysteines.We have investigated the preparation, stability, and activity of anti-folate receptor alpha (FRα) ADCs carrying the microtubule inhibitor, DM1, and conjugated to engineered cysteine mutants utilizing different sites, and compared these ADCs with lysine-directed heterogeneous conjugates. In both embodiments, the DM1 is linked with a protease-cleavable linker. We show that highly homogeneous DM1 ADCs can be produced using engineered cysteine chemistry, enabling assessment of the effects of site-specific conjugation in cells and in animal models. We find that in vitro potency of both lysine-linked and engineered cysteine-linked ADCs against FRα-positive KB cells scales with the total DM1 delivered to cells. Buffer stability experiments in the presence of excess thiol suggest that most engineered cysteine conjugates are comparable in stability to the lysine-linked ADC. A notable exception shows about twice as much fractional DM1 loss upon 3 days of incubation as the other conjugates. Comparison of in vivo activity of two site-specific DM1 ADCs in a KB xenograft model shows measurable activity differences between different conjugation sites. However, a lysine-linked conjugate using almost identical linker chemistry shows approximately 2-fold superior activity to either site-specific construct on a molar DM1 basis. We conclude that, while site-specific conjugation of ADCs may provide a benefit in certain contexts, in other contexts, it may lead to decreased activity, such as in the anti-FRα/KB model examined here. We also observe that different conjugation sites may offer significant differences in activity. It is therefore advisable to evaluate each unique combination of payload, linker, drug:antibody ratio, conjugation site(s), and antibody to the maximum extent possible. Citation Format: Nicholas C. Yoder, Chen Bai, Daniel Tavares, Wayne C. Widdison, Olga Ab, Kathleen R. Whiteman, Alan Wilhelm, Erin K. Maloney, Hans K. Erickson, Thomas A. Keating. Stability and efficacy comparison of site-specific and lysine-linked maytansinoid antibody-drug conjugates. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 645. doi:10.1158/1538-7445.AM2015-645
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 21 ( 2015-11-01), p. 4651-4664
    Abstract: The ability of a cancer cell to develop resistance to anoikis, a programmed cell death process triggered by substratum detachment, is a critical step in the metastatic cascade. Triple-negative breast cancers (TNBC) exhibit higher rates of metastasis after diagnosis, relative to estrogen-positive breast cancers, but while TNBC cells are relatively more resistant to anoikis, the mechanisms involved are unclear. Through gene expression and metabolomic profiling of TNBC cells in forced suspension culture, we identified a molecular pathway critical for anchorage-independent cell survival. TNBC cells in suspension upregulated multiple genes in the kynurenine pathway of tryptophan catabolism, including the enzyme tryptophan 2,3-dioxygenase (TDO2), in an NF-κB–dependent manner. Kynurenine production mediated by TDO2 in TNBC cells was sufficient to activate aryl hydrocarbon receptor (AhR), an endogenous kynurenine receptor. Notably, pharmacologic inhibition or genetic attenuation of TDO2 or AhR increased cellular sensitivity to anoikis, and also reduced proliferation, migration, and invasion of TNBC cells. In vivo, TDO2 inhibitor–treated TNBC cells inhibited colonization of the lung, suggesting that TDO2 enhanced metastatic capacity. In clinical specimens of TNBC, elevated expression of TDO2 was associated with increased disease grade, estrogen receptor–negative status, and shorter overall survival. Our results define an NF-κB–regulated signaling axis that promotes anoikis resistance, suggest functional connections with inflammatory modulation by the kynurenine pathway, and highlight TDO2 as an attractive target for treatment of this aggressive breast cancer subtype. Cancer Res; 75(21); 4651–64. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 2890-2890
    Abstract: Folate Receptor alpha (FRα) is an attractive antibody drug conjugate (ADC) target due to its over expression in multiple epithelial malignancies including ovarian, endometrial, triple negative breast, and non-small cell lung cancer, with limited expression on normal tissues. IMGN853 (i.e., mirvetuximab soravtansine and M9346A-sulfo-SPDB-DM4), a FRα targeting ADC, is currently in phase III (MIRASOL) clinical evaluation as monotherapy in patients with platinum-resistant epithelial ovarian cancer with high levels of FRα expression. The MIRASOL study builds on the results from the prior randomized study, FORWARD I, which demonstrated that improved outcomes with IMGN853 correlated with FRα expression, with the strongest treatment effects for all efficacy endpoints in ovarian cancer patients with FRα-high disease (Moore, ESMO 2019). In order to address the unmet needs of additional patient populations, we sought to develop a next generation FRα-targeting ADC active against tumors with a broad range of FRα expression. Development of a new molecular entity with the desired antitumor properties included optimization of the antibody format and the linker-payload. The resulting lead ADC denoted IMGN151 comprises an asymmetric, bivalent, biparatopic antibody targeting two independent epitopes of FRα, linked to the highly potent maytansinoid derivative DM21 via a stable cleavable peptide linker. The average drug per antibody ratio is 3.5. The binding, internalization and processing of the biparatopic IMGN151 and the parent monospecific antibodies were compared using 3H-antibodies. In tumor cells with medium (JHOS4) and high (KB) FRα expression the biparatopic antibody boosted antibody binding events and processing by 100% and 170%, respectively. The plasma stability of IMGN151 was tested in a cynomolgus monkey pharmacokinetic study. The stable linker increased ADC half-life by 60 hours and conjugate exposure in vivo by 40%, as compared to IMGN853. IMGN151 activity was characterized against cell lines and xenograft models with a wide range of FRα expression and compared to IMGN853. In in vitro studies, both ADCs had similar activity against FRα-high KB cells; IMGN151 was up to 200 times more active against four FRα-medium cell lines. IMGN151 had also notably stronger bystander killing activity in a mixed culture of target-positive and negative cells. In vivo IMGN151 induced complete tumor regressions of human tumor xenograft models with high (KB, H-score of 300), medium (Igrov-1 and Ishikawa, H-score of 140 and 100, respectively) and low (Ov-90, H-score of 30) FRα expression. All tested doses were well tolerated with no body weight loss observed. With a novel biparatopic antibody and linker payload design, IMGN151 has shown potent antitumor activity against ovarian cancer models with a broad range of FRα expression, which warrants further development into the clinic for patients with tumors expressing FRα at a wide range of levels. Citation Format: Olga Ab, Laura M. Bartle, Leanne Lanieri, Jose F. Ponte, Qifeng Qiu, Surina Sikka, Juliet A. Costoplus, Wayne Deats, Nicholas C. Yoder, Wayne C. Widdison, Katherine Mucciarone, Kate Selvitelli, Ying Chen, Neeraj Kohli, Thomas Chittenden, Richard Gregory, Yulius Setiady, Eric H. Westin. IMGN151 - A next generation folate receptor alpha targeting antibody drug conjugate active against tumors with low, medium and high receptor expression [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 2890.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 17 ( 2017-09-01), p. 5055-5065
    Abstract: Purpose: While stereotactic body radiotherapy (SBRT) can reduce tumor volumes in patients with metastatic renal cell carcinoma (mRCC), little is known regarding the immunomodulatory effects of high-dose radiation in the tumor microenvironment. The main objectives of this pilot study were to assess the safety and feasibility of nephrectomy following SBRT treatment of patients with mRCC and analyze the immunological impact of high-dose radiation. Experimental Design: Human RCC cell lines were irradiated and evaluated for immunomodulation. In a single-arm feasibility study, patients with mRCC were treated with 15 Gray SBRT at the primary lesion in a single fraction followed 4 weeks later by cytoreductive nephrectomy. RCC specimens were analyzed for tumor-associated antigen (TAA) expression and T-cell infiltration. The trial has reached accrual (ClinicalTrials.gov identifier: NCT01892930). Results: RCC cells treated in vitro with radiation had increased TAA expression compared with untreated tumor cells. Fourteen patients received SBRT followed by surgery, and treatment was well-tolerated. SBRT-treated tumors had increased expression of the immunomodulatory molecule calreticulin and TAA (CA9, 5T4, NY-ESO-1, and MUC-1). Ki67+ -proliferating CD8+ T cells and FOXP3+ cells were increased in SBRT-treated patient specimens in tumors and at the tumor–stromal interface compared with archived patient specimens. Conclusions: It is feasible to perform nephrectomy following SBRT with acceptable toxicity. Following SBRT, patient RCC tumors have increased expression of calreticulin, TAA, as well as a higher percentage of proliferating T cells compared with archived RCC tumors. Collectively, these studies provide evidence of immunomodulation following SBRT in mRCC. Clin Cancer Res; 23(17); 5055–65. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 14, No. 11 ( 2016-11-01), p. 1054-1067
    Abstract: Androgen receptor (AR) is expressed in 90% of estrogen receptor alpha–positive (ER+) breast tumors, but its role in tumor growth and progression remains controversial. Use of two anti-androgens that inhibit AR nuclear localization, enzalutamide and MJC13, revealed that AR is required for maximum ER genomic binding. Here, a novel global examination of AR chromatin binding found that estradiol induced AR binding at unique sites compared with dihydrotestosterone (DHT). Estradiol-induced AR-binding sites were enriched for estrogen response elements and had significant overlap with ER-binding sites. Furthermore, AR inhibition reduced baseline and estradiol-mediated proliferation in multiple ER+/AR+ breast cancer cell lines, and synergized with tamoxifen and fulvestrant. In vivo, enzalutamide significantly reduced viability of tamoxifen-resistant MCF7 xenograft tumors and an ER+/AR+ patient-derived model. Enzalutamide also reduced metastatic burden following cardiac injection. Finally, in a comparison of ER+/AR+ primary tumors versus patient-matched local recurrences or distant metastases, AR expression was often maintained even when ER was reduced or absent. These data provide preclinical evidence that anti-androgens that inhibit AR nuclear localization affect both AR and ER, and are effective in combination with current breast cancer therapies. In addition, single-agent efficacy may be possible in tumors resistant to traditional endocrine therapy, as clinical specimens of recurrent disease demonstrate AR expression in tumors with absent or refractory ER. Implications: This study suggests that AR plays a previously unrecognized role in supporting E2-mediated ER activity in ER+/AR+ breast cancer cells, and that enzalutamide may be an effective therapeutic in ER+/AR+ breast cancers. Mol Cancer Res; 14(11); 1054–67. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 17, No. 3 ( 2018-03-01), p. 650-660
    Abstract: Tumor-selective delivery of cytotoxic agents in the form of antibody–drug conjugates (ADCs) is now a clinically validated approach for cancer treatment. In an attempt to improve the clinical success rate of ADCs, emphasis has been recently placed on the use of DNA–cross-linking pyrrolobenzodiazepine compounds as the payload. Despite promising early clinical results with this class of ADCs, doses achievable have been low due to systemic toxicity. Here, we describe the development of a new class of potent DNA-interacting agents wherein changing the mechanism of action from a cross-linker to a DNA alkylator improves the tolerability of the ADC. ADCs containing the DNA alkylator displayed similar in vitro potency, but improved bystander killing and in vivo efficacy, compared with those of the cross-linker. Thus, the improved in vivo tolerability and antitumor activity achieved in rodent models with ADCs of the novel DNA alkylator could provide an efficacious, yet safer option for cancer treatment. Mol Cancer Ther; 17(3); 650–60. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 19, No. 11 ( 2020-11-01), p. 2235-2244
    Abstract: B7-H3, also referred to as CD276, is a member of the B7 family of immune regulatory proteins. B7-H3 is overexpressed on many solid cancers, including prostate cancer, renal cell carcinoma, melanoma, squamous cell carcinoma of the head and neck, non–small cell lung cancer, and breast cancer. Overexpression of B7-H3 is associated with disease severity, risk of recurrence and reduced survival. In this article, we report the preclinical development of MGC018, an antibody–drug conjugate targeted against B7-H3. MGC018 is comprised of the cleavable linker-duocarmycin payload, valine-citrulline-seco duocarmycin hydroxybenzamide azaindole (vc-seco-DUBA), conjugated to an anti-B7-H3 humanized IgG1/kappa mAb through reduced interchain disulfides, with an average drug-to-antibody ratio of approximately 2.7. MGC018 exhibited cytotoxicity toward B7-H3–positive human tumor cell lines, and exhibited bystander killing of target-negative tumor cells when cocultured with B7-H3–positive tumor cells. MGC018 displayed potent antitumor activity in preclinical tumor models of breast, ovarian, and lung cancer, as well as melanoma. In addition, antitumor activity was observed toward patient-derived xenograft models of breast, prostate, and head and neck cancer displaying heterogeneous expression of B7-H3. Importantly, MGC018 exhibited a favorable pharmacokinetic and safety profile in cynomolgus monkeys following repeat-dose administration. The antitumor activity observed preclinically with MGC018, together with the positive safety profile, provides evidence of a potentially favorable therapeutic index and supports the continued development of MGC018 for the treatment of solid cancers.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 64, No. 20 ( 2004-10-15), p. 7216-7219
    Abstract: We describe the fusion of TP53BP1 to PDGFRB in a patient with a chronic myeloid leukemia-like disorder associated with eosinophilia and a t(5;15)(q33;q22). TP53BP1 encodes 53BP1, a p53-binding protein that plays a role in cellular responses to DNA damage. The 53BP1-PDGFRβ fusion protein is predicted to retain the kinetochore-binding domain of 53BP1 fused to the transmembrane and intracellular tyrosine kinase domain of PDGFRβ. The presence of the fusion was confirmed by two-color fluorescence in situ hybridization, reverse transcription-PCR, and by characterizing the genomic breakpoints. The reciprocal fusion, which would contain the p53-binding 53BP1 BRCA1 COOH-terminal domains, was not detectable by fluorescence in situ hybridization or nested PCR. Imatinib, a known inhibitor of PDGFRβ, blocked the growth of patient colony-forming unit, granulocyte-macrophage in vitro and produced a clinically significant response before relapse and subsequent death with imatinib-resistant disease. We conclude that TP53BP1-PDGFRB is a novel imatinib target in atypical chronic myeloid leukemia.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2004
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...