GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (3)
Material
Publisher
  • American Association for Cancer Research (AACR)  (3)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2019
    In:  Clinical Cancer Research Vol. 25, No. 3 ( 2019-02-01), p. 1022-1035
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 25, No. 3 ( 2019-02-01), p. 1022-1035
    Abstract: The development of resistance to platinum-based chemotherapy remains the unsurmountable obstacle in cancer treatment and consequently leads to tumor relapse. This study aims to investigate the mechanism by which loss of RBMS3 induced chemoresistance in epithelial ovarian cancer (EOC). Experimental Design: FISH and IHC were used to determine deletion frequency and expression of RBMS3 in 15 clinical EOC tissues and 150 clinicopathologically characterized EOC specimens. The effects of RBMS3 deletion and CBP/β-catenin antagonist PRI-724 in chemoresistance were examined by clone formation and Annexin V assays in vitro, and by intraperitoneal tumor model in vivo. The mechanism by which RBMS3 loss sustained activation of miR-126-5p/β-catenin/CBP signaling and the effects of RBMS3 and miR-126-5p competitively regulating DKK3, AXIN1, BACH1, and NFAT5 was explored using CLIP-seq, RIP, electrophoretic mobility shift, and immunoblotting and immunofluorescence assays. Results: Loss of RBMS3 in EOC was correlated with the overall and relapse-free survival. Genetic ablation of RBMS3 significantly enhanced, whereas restoration of RBMS3 reduced, the chemoresistance ability of EOC cells both in vitro and in vivo. RBMS3 inhibited β-catenin/CBP signaling through directly associating with and stabilizing multiple negative regulators, including DKK3, AXIN1, BACH1, and NFAT5, via competitively preventing the miR-126-5p–mediated repression of these transcripts. Importantly, cotherapy of CBP/β-catenin antagonist PRI-724 induced sensitization of RBMS3-deleted EOC to platinum therapy. Conclusions: Our results demonstrate that genetic ablation of RBMS3 contributes to chemoresistance and PRI-724 may serve as a potential tailored treatment for patients with RBMS3-deleted EOC.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 21, No. 7 ( 2023-07-05), p. 648-663
    Abstract: The chemoresistance of temozolomide-based therapy is a serious limitation for lasting effective treatment of gliomas, while the underlying mechanisms remain unclear. In this study, we showed that downregulation of BASP1 correlated negatively with the response to temozolomide therapy and disease-free survival (DFS) of patients with gliomas. Silencing BASP1 significantly enhanced the temozolomide resistance of glioma cells both in vitro and in vivo through repair of temozolomide-induced DNA damage via activation of the FBXO32/NF-κB/MGMT axis in both MGMT-methylated and -unmethylated gliomas. We demonstrated that loss of BASP1 resulted in removal of TRIM37/EZH2 complex–induced repressive histone modifications, including H2A-ub and H3K27me3, but addition of WDR5/MLL complex–mediated active histone modifications, including H3K4me3 and H3K9ac, on the FBXO32 promoter, which elicited in FBXO32 upregulation and further activated NF-κB/MGMT signaling via ubiquitin-dependent degradation of IκBα. Importantly, treatment with OICR-9429, an antagonist of the WDR5–MLL interaction, impaired the FBXO32/NF-κB/MGMT axis–mediated repair of temozolomide-induced DNA damage, leading to significant apoptosis of BASP1-downregulated glioma cells. These findings shed light on the molecular mechanism underlying BASP1-mediated epigenetic transcriptional repression and may represent a potential strategy in the fight against temozolomide-resistant gliomas. Implications: BASP1 downregulation promotes temozolomide resistance in gliomas through WDR5/MLL complex–mediated epigenetic activation of the FBXO32/NF-κB/MGMT axis, providing new target for improving outcomes in patients with temozolomide-resistant gliomas.
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 14 ( 2021-07-15), p. 3835-3848
    Abstract: Mitochondrial dynamics play vital roles in the tumorigenicity and malignancy of various types of cancers by promoting the tumor-initiating potential of cancer cells, suggesting that targeting crucial factors that drive mitochondrial dynamics may lead to promising anticancer therapies. In the current study, we report that overexpression of mitochondrial fission factor (MFF), which is upregulated significantly in liver cancer–initiating cells (LCIC), promotes mitochondrial fission and enhances stemness and tumor-initiating capability in non-LCICs. MFF-induced mitochondrial fission evoked mitophagy and asymmetric stem cell division and promoted a metabolic shift from oxidative phosphorylation to glycolysis that decreased mitochondrial reactive oxygen species (ROS) production, which prevented ROS-mediated degradation of the pluripotency transcription factor OCT4. CRISPR affinity purification in situ of regulatory elements showed that T-box transcription factor 19 (TBX19), which is overexpressed uniquely in LCICs compared with non-LCICs and liver progenitor cells, forms a complex with PRMT1 on the MFF promoter in LCICs, eliciting epigenetic histone H4R3me2a/H3K9ac-mediated transactivation of MFF. Targeting PRMT1 using furamidine, a selective pharmacologic inhibitor, suppressed TBX19-induced mitochondrial fission, leading to a profound loss of self-renewal potential and tumor-initiating capacity of LCICs. These findings unveil a novel mechanism underlying mitochondrial fission–mediated cancer stemness and suggest that regulation of mitochondrial fission via inhibition of PRMT1 may be an attractive therapeutic option for liver cancer treatment. Significance: These findings show that TBX19/PRMT1 complex–mediated upregulation of MFF promotes mitochondrial fission and tumor-initiating capacity in liver cancer cells, identifying PRMT1 as a viable therapeutic target in liver cancer.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...