GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (10)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 9 ( 2019-05-01), p. 2111-2123
    Abstract: Pediatric glioblastoma (pGBM) is a lethal cancer with no effective therapies. To understand the mechanisms of tumor evolution in this cancer, we performed whole-genome sequencing with linked reads on longitudinally resected pGBM samples. Our analyses showed that all diagnostic and recurrent samples were collections of genetically diverse subclones. Clonal composition rapidly evolved at recurrence, with less than 8% of nonsynonymous single-nucleotide variants being shared in diagnostic-recurrent pairs. To track the origins of the mutational events observed in pGBM, we generated whole-genome datasets for two patients and their parents. These trios showed that genetic variants could be (i) somatic, (ii) inherited from a healthy parent, or (iii) de novo in the germlines of pGBM patients. Analysis of variant allele frequencies supported a model of tumor growth involving slow-cycling cancer stem cells that give rise to fast-proliferating progenitor-like cells and to nondividing cells. Interestingly, radiation and antimitotic chemotherapeutics did not increase overall tumor burden upon recurrence. These findings support an important role for slow-cycling stem cell populations in contributing to recurrences, because slow-cycling cell populations are expected to be less prone to genotoxic stress induced by these treatments and therefore would accumulate few mutations. Our results highlight the need for new targeted treatments that account for the complex functional hierarchies and genomic heterogeneity of pGBM. Significance: This work challenges several assumptions regarding the genetic organization of pediatric GBM and highlights mutagenic programs that start during early prenatal development.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 5 ( 2021-05-01), p. 1176-1191
    Abstract: Although replication repair deficiency, either by mismatch repair deficiency (MMRD) and/or loss of DNA polymerase proofreading, can cause hypermutation in cancer, microsatellite instability (MSI) is considered a hallmark of MMRD alone. By genome-wide analysis of tumors with germline and somatic deficiencies in replication repair, we reveal a novel association between loss of polymerase proofreading and MSI, especially when both components are lost. Analysis of indels in microsatellites (MS-indels) identified five distinct signatures (MS-sigs). MMRD MS-sigs are dominated by multibase losses, whereas mutant-polymerase MS-sigs contain primarily single-base gains. MS deletions in MMRD tumors depend on the original size of the MS and converge to a preferred length, providing mechanistic insight. Finally, we demonstrate that MS-sigs can be a powerful clinical tool for managing individuals with germline MMRD and replication repair–deficient cancers, as they can detect the replication repair deficiency in normal cells and predict their response to immunotherapy. Significance: Exome- and genome-wide MSI analysis reveals novel signatures that are uniquely attributed to mismatch repair and DNA polymerase. This provides new mechanistic insight into MS maintenance and can be applied clinically for diagnosis of replication repair deficiency and immunotherapy response prediction. This article is highlighted in the In This Issue feature, p. 995
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 6 ( 2021-06-01), p. 1454-1467
    Abstract: The RAS/MAPK pathway is an emerging targeted pathway across a spectrum of both adult and pediatric cancers. Typically, this is associated with a single, well-characterized point mutation in an oncogene. Hypermutant tumors that harbor many somatic mutations may obscure the interpretation of such targetable genomic events. We find that replication repair–deficient (RRD) cancers, which are universally hypermutant and affect children born with RRD cancer predisposition, are enriched for RAS/MAPK mutations (P = 10−8). These mutations are not random, exist in subclones, and increase in allelic frequency over time. The RAS/MAPK pathway is activated both transcriptionally and at the protein level in patient-derived RRD tumors, and these tumors responded to MEK inhibition in vitro and in vivo. Treatment of patients with RAS/MAPK hypermutant gliomas reveals durable responses to MEK inhibition. Our observations suggest that hypermutant tumors may be addicted to oncogenic pathways, resulting in favorable response to targeted therapies. Significance: Tumors harboring a single RAS/MAPK driver mutation are targeted individually for therapeutic purposes. We find that in RRD hypermutant cancers, mutations in the RAS/MAPK pathway are enriched, highly expressed, and result in sensitivity to MEK inhibitors. Targeting an oncogenic pathway may provide therapeutic options for these hypermutant polyclonal cancers. This article is highlighted in the In This Issue feature, p. 1307
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 12 ( 2017-06-15), p. 3217-3230
    Abstract: Aerobic glycolysis supports proliferation through unresolved mechanisms. We have previously shown that aerobic glycolysis is required for the regulated proliferation of cerebellar granule neuron progenitors (CGNP) and for the growth of CGNP-derived medulloblastoma. Blocking the initiation of glycolysis via deletion of hexokinase-2 (Hk2) disrupts CGNP proliferation and restricts medulloblastoma growth. Here, we assessed whether disrupting pyruvate kinase-M (Pkm), an enzyme that acts in the terminal steps of glycolysis, would alter CGNP metabolism, proliferation, and tumorigenesis. We observed a dichotomous pattern of PKM expression, in which postmitotic neurons throughout the brain expressed the constitutively active PKM1 isoform, while neural progenitors and medulloblastomas exclusively expressed the less active PKM2. Isoform-specific Pkm2 deletion in CGNPs blocked all Pkm expression. Pkm2-deleted CGNPs showed reduced lactate production and increased SHH-driven proliferation. 13C-flux analysis showed that Pkm2 deletion reduced the flow of glucose carbons into lactate and glutamate without markedly increasing glucose-to-ribose flux. Pkm2 deletion accelerated tumor formation in medulloblastoma-prone ND2:SmoA1 mice, indicating the disrupting PKM releases CGNPs from a tumor-suppressive effect. These findings show that distal and proximal disruptions of glycolysis have opposite effects on proliferation, and that efforts to block the oncogenic effect of aerobic glycolysis must target reactions upstream of PKM. Cancer Res; 77(12); 3217–30. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 14 ( 2017-07-15), p. 3766-3777
    Abstract: Medulloblastoma arising from the cerebellum is the most common pediatric brain malignancy, with leptomeningeal metastases often present at diagnosis and recurrence associated with poor clinical outcome. In this study, we used mouse medulloblastoma models to explore the relationship of tumor pathophysiology and dysregulated expression of the NOTCH pathway transcription factor ATOH1, which is present in aggressive medulloblastoma subtypes driven by aberrant Sonic Hedgehog/Patched (SHH/PTCH) signaling. In experiments with conditional ATOH1 mouse mutants crossed to Ptch1+/− mice, which develop SHH-driven medulloblastoma, animals with Atoh1 transgene expression developed highly penetrant medulloblastoma at a young age with extensive leptomeningeal disease and metastasis to the spinal cord and brain, resembling xenografts of human SHH medulloblastoma. Metastatic tumors retained abnormal SHH signaling like tumor xenografts. Conversely, ATOH1 expression was detected consistently in recurrent and metastatic SHH medulloblastoma. Chromatin immunoprecipitation sequencing and gene expression profiling identified candidate ATOH1 targets in tumor cells involved in development and tumorigenesis. Among these targets specific to metastatic tumors, there was an enrichment in those implicated in extracellular matrix remodeling activity, cytoskeletal network and interaction with microenvironment, indicating a shift in transcriptomic and epigenomic landscapes during metastasis. Treatment with bone morphogenetic protein or SHH pathway inhibitors decreased tumor cell proliferation and suppressed metastatic tumor growth, respectively. Our work reveals a dynamic ATOH1-driven molecular cascade underlying medulloblastoma metastasis that offers possible therapeutic opportunities. Cancer Res; 77(14); 3766–77. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 16 ( 2019-08-15), p. 4057-4071
    Abstract: Glioblastoma is the most common primary brain tumor in adults. While the introduction of temozolomide chemotherapy has increased long-term survivorship, treatment failure and rapid tumor recurrence remains universal. The transcriptional regulatory protein, inhibitor of DNA-binding-1 (ID1), is a key regulator of cell phenotype in cancer. We show that CRISPR-mediated knockout of ID1 in glioblastoma cells, breast adenocarcinoma cells, and melanoma cells dramatically reduced tumor progression in all three cancer systems through transcriptional downregulation of EGF, which resulted in decreased EGFR phosphorylation. Moreover, ID1-positive cells were enriched by chemotherapy and drove tumor recurrence in glioblastoma. Addition of the neuroleptic drug pimozide to inhibit ID1 expression enhanced the cytotoxic effects of temozolomide therapy on glioma cells and significantly prolonged time to tumor recurrence. Conclusively, these data suggest ID1 could be a promising therapeutic target in patients with glioblastoma. Significance: These findings show that the transcriptional regulator ID1 is critical for glioblastoma initiation and chemoresistance and that inhibition of ID1 enhances the effect of temozolomide, delays tumor recurrence, and prolongs survival.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 14_Supplement ( 2020-07-15), p. IA11-IA11
    Abstract: Many immunotherapies act by enhancing T-cell killing of tumor cells. Cytotoxic T cells recognize antigens presented by class I major histocompatibility complex (MHC-I) proteins on tumor cells. Our studies suggest that medulloblastomas and high-grade gliomas lacking the p53 tumor suppressor do not express surface MHC-I and are therefore resistant to immune rejection. Mechanistically, this is because p53 regulates expression of the peptide transporter Tap1 and the aminopeptidase Erap1, which are required for MHC-I trafficking to the cell surface. Treatment with tumor necrosis factor or lymphotoxin beta receptor agonist rescues expression of Erap1, Tap1, and MHC-I on p53 mutant tumor cells. In vivo, TNF treatment prolongs survival and markedly augments the efficacy of the immune checkpoint inhibitor anti-PD-1. These studies identify p53 as a key regulator of immune evasion in vivo and suggest that TNF could be used to enhance sensitivity of p53-mutant tumors to immunotherapy. Citation Format: Alexandra Garancher, Hiromichi Suzuki, Svasti Haricharan, Meher B. Masihi, Jessica M. Rusert, Paula S. Norris, Florent Carrette, Megan M. Romero, Sorana A. Morrissy, Patryk Skowron, Florence M.G. Cavalli, Hamza Farooq, Vijay Ramaswamy, Alaide Morcavallo, Jacob J. Henderson, James M. Olson, Yoon-Jae Cho, Xiao-Nan Li, Louis Chesler, Marco A. Marra, Oren J. Becher, Linda M. Bradley, Carl F. Ware, Michael D. Taylor, Robert J. Wechsler-Reya. Overcoming immune evasion in pediatric brain tumors [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr IA11.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2019
    In:  Molecular Cancer Research Vol. 17, No. 1 ( 2019-01-01), p. 186-198
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 17, No. 1 ( 2019-01-01), p. 186-198
    Abstract: Medulloblastomas, the most common malignant pediatric brain tumors, have been genetically defined into four subclasses, namely WNT-activated, Sonic Hedgehog (SHH)-activated, Group 3, and Group 4. Approximately 30% of medulloblastomas have aberrant SHH signaling and thus are referred to as SHH-activated medulloblastoma. The tumor suppressor gene TP53 has been recently recognized as a prognostic marker for patients with SHH-activated medulloblastoma; patients with mutant TP53 have a significantly worse outcome than those with wild-type TP53. It remains unknown whether p53 activity is impaired in SHH-activated, wild-type TP53 medulloblastoma, which is about 80% of the SHH-activated medulloblastomas. Utilizing the homozygous NeuroD2:SmoA1 mouse model with wild-type Trp53, which recapitulates human SHH-activated medulloblastoma, it was discovered that the endogenous Inhibitor 2 of Protein Phosphatase 2A (SET/I2PP2A) suppresses p53 function by promoting accumulation of phospho-MDM2 (S166), an active form of MDM2 that negatively regulates p53. Knockdown of I2PP2A in SmoA1 primary medulloblastoma cells reduced viability and proliferation in a p53-dependent manner, indicating the oncogenic role of I2PP2A. Importantly, this mechanism is conserved in the human medulloblastoma cell line ONS76 with wild-type TP53. Taken together, these findings indicate that p53 activity is inhibited by I2PP2A upstream of PP2A in SHH-activated and TP53-wildtype medulloblastomas. Implications: This study suggests that I2PP2A represents a novel therapeutic option and its targeting could improve the effectiveness of current therapeutic regimens for SHH-activated or other subclasses of medulloblastoma with wild-type TP53.
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 8_Supplement ( 2023-04-14), p. LB078-LB078
    Abstract: Sarcomas are a broad group of soft tissue and bone cancers that can be difficult to treat leading to a high mortality rate. Sarcomas comprise two broad genomic classes: (1) simple karyotypes, where a single oncogenic structural variant (SV) clonally expands a subtype that is diagnostic and relevant to tumor burden tracking; and (2) complex karyotypes, genomic instability, where SVs continuously arise throughout tumor evolution resulting in heterogeneous cellular subtypes. Class two sarcomas are harder to characterize using genome sequencing because there may be multiple low-frequency mutations. In both genomic classes, accurate and sensitive detection of fusion transcripts is needed to interpret functional consequences, to understand tumor biology and evolution, and potentially identify new targets for therapy. Many fusions have complex structures that cannot be uniquely resolved using short reads due to a lack of exon connectivity. PacBio full-length RNA isoform sequencing resolves complex fusions, providing more accurate breakpoints, and a complete sequence readout of the associated fusion transcript. To date, long-read fusion detection software was designed for high-error sequencing. PacBio HiFi data provides both full-length transcripts and accurate base calls. Here we present a fusion detection tool, pbfusion, specifically designed for HiFi sequence data, and apply it to sarcoma patients from both classes. pbfusion converts mapped sequences (either HiFi reads or Iso-Seq isoforms) into transcript objects that are annotated with reference gene models. Annotations determine whether transcripts are discordantly mapped, overlap differing genes, strand swap, transcriptional readthrough, or contain novel exons. The discordant exonic boundaries are treated as breakpoints between two genomic locations. All breakpoints are clustered with a multi-directional chaining algorithm and annotated with exonic information, gene names, and quality information. To test our method, we applied pbfusion to twelve samples from 8 sarcoma patients from both genomic classes. We discovered the known and novel fusions, including validated driver events in the fusion-driven samples (e.g. ASPSCR1-TFE3 in alveolar soft part sarcoma and SS18-SSX2/1 fusion in synovial sarcoma). This approach demonstrates the utility of HiFi sequence data for identification of fusion transcripts in patient samples, and the use of pbfusion in quantifying and annotating these events. pbfusion provides a user-friendly interface, can process a sample in a few minutes, and is freely available to the research community on Bioconda. Citation Format: Roger Volden, Zev Kronenberg, Aaron Gillmor, Ted Verhey, Michael Monument, Donna Senger, Harsharan Dhillon, Jason Underwood, Elizabeth Tseng, Daniel Baker, Primo Baybayan, Michael A. Eberle, Jonas Korlach, Sorana Morrissy. pbfusion: Detecting gene-fusion and other transcriptional abnormalities using PacBio HiFi data [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 2 (Clinical Trials and Late-Breaking Research); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(8_Suppl):Abstract nr LB078.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2022
    In:  Cancer Research Vol. 82, No. 12_Supplement ( 2022-06-15), p. 6397-6397
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 6397-6397
    Abstract: Glioblastoma multiforme (GBM) is the most common adult brain tumour, and despite aggressive treatment, it recurs fatally. GBM tumours include diverse populations of malignant and non-neoplastic cells with distinct molecular capabilities and with differential levels of sensitivity to treatment. Understanding the cell dynamics that occur during the development of GBM resistance to therapy could reveal key aspects of this process, including how resistance is acquired in time and how the diverse cell types of the tumour microenvironment (TME) contribute to this phenotype. In addition to the role of the TME, GBM exhibits significant tumour heterogeneity with diverse genetic clones coexisting in the same tumor, as well as cells with similar genetic backgrounds capable of adopting distinct transcriptional states and subtypes. The complex and dynamic interactions between tumor and TME remain to be fully studied. This work focuses on the in vivo spatial organization in GBM during disease progression. We generated spatial transcriptomic data from a set of adult GBM samples grown as patient-derived xenograft (PDX) models, profiled at different time points of the disease. Three PDX lines from one GBM patient (derived from tumor core, vascularized area, and infiltrating front) were used to recapitulate the genetic and phenotypic heterogeneity observed in the human disease. Two replicates from each of 8 PDX mice were collected from early, mid, and late time points of tumour growth and data was generated using the 10X Genomics Visium platform. We developed a robust computational pipeline capable of distinguishing admixture of human (tumour) and mouse cells (TME), using state-of-the-art tools. Human and mouse cell types and states were identified using pooled and separate single-cell references of human GBM states, and mouse brain cells from both normal and tumour conditions. With this approach we observe spatially distinct patterns of both (a) tumour infiltration patterns specific to the each PDX line that includes non-random distribution of GBM transcriptional states and genetic clones, and (b) spatially distinct infiltration of TME components including microglial and macrophage populations. Overall, our approach addresses the challenge of understanding the tumor-TME relationship by application of spatial profiling in PDX models, and provides a computational pipeline complex multi-species analysis in the spatial transcriptomic field. Citation Format: Aly O. Abdelkareem, Katalin Osz, Donna Senger, Jennifer A. Chan, Sorana Morrissy. Understanding the glioblastoma microenvironment with spatial resolution in PDX models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 6397.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...