GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (42)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 84, No. 3_Supplement_1 ( 2024-02-01), p. A005-A005
    Abstract: The HER2 diagnostics is necessary for selection of patients harboring HER2 gene amplification or protein overexpression who will benefit from anti-HER2 therapies in breast cancer. However, HER2 testing is still challenging due to the subjective natures of immunohistochemistry (IHC) and in situ hybridization (ISH), standard methods for determining HER2 status. Thus, a new method is needed to accurately quantify HER2 levels. Here, we developed a clinically reliable HER2 testing method enabling ultra-fast detection of HER2 gene amplification with high accuracy by using the digital real-time PCR (drPCR) system, a potential new diagnostic platform with improved performance by integrating both real-time and digital PCR technologies. For drPCR-based HER2 copy number (CN) measurement, primer-probe sets specific to HER2 gene and a genomic region adjacent to chromosome 17 centromere (CEP17) were designed, and the optimal drPCR condition was determined in clinical breast tumor specimens. To test the clinical validity and standardize procedures of drPCR-based HER2 status evaluation, three independent breast cancer cohorts from different institutions were enrolled, which assigned as a training (SCHU hospital, n = 103) and two validation sets (SNU hospital, n = 170; CNUH hospital, n = 45), and the drPCR assay was compared with current standard HER2 testing methods. In the training cohort, the HER2/CEP17 ratio values from FISH and drPCR tests were highly correlated (r2 = 0.81; P & lt; 0.001), and the drPCR results displayed 98.1% concordance to HER2 status defined by IHC and/or FISH with 92.6% sensitivity and 100% specificity. Eight samples further verified by targeted NGS showed 100% concordance of dPCR to NGS. Consistently, two validation cohorts also showed high concordance of drPCR to IHC and/or ISH results (accuracy = 97.1% and 97.8% in SNU and CNUH cohorts, respectively). The optimal cutoff for HER2 positivity in the drPCR assay was set as a HER2/CEP17 ratio ≥ 1.9 with AUC of 0.963 based on the results from training cohort, and the same cut-off for drPCR was applicable to two independent validation cohorts, supporting the clinical validity of our drPCR-based HER2 assessment. In some discordant cases, low tumor purity (≤ 25%) was observed and microdissection partly improved the drPCR results. The discordance between drPCR and ISH results was also found in marginal HER2+ cases with HER2/CEP17 ratio 2-3, but these cases showed inter-observer variability when re-evaluating the ISH/IHC data due to intratumoral HER2 heterogeneity. Of note, in HER2 IHC3+ cases with negative drPCR results, re-evaluation of IHC using an artificial intelligence (AI)-based HER2 scoring system revised the HER2 IHC 3+ score to 2+, and ISH assessment also confirmed that these cases are indeed HER2-negative, proving the high accuracy of HER2 CN drPCR assay. In conclusion, given the advantages of drPCR-based HER2 assessment with high accuracy, sensitivity, and simplicity, the drPCR assay could be a complementary or alternative method to IHC and ISH to greatly improve current HER2 testing. Citation Format: Jin hyuk Chang, YoonSik Kim, Hee-Joo Choi, Soo Young Park, Ji-Hye Park, Hee-Young Won, Min Ji Song, Da Sol Kim, Hayeon Kim, Sohyeon Yang, Nam Hun Heo, Minsik Song, Seung-Shick Shin, Do Young Lee, Han Suk Ryu, Si-Hyong Jang, Jeong-Yeon Lee. Ultra-rapid and precise measurement of HER2 copy number alteration by next-generation digital PCR capable of real-time analysis in patients with breast cancer: A multicenter retrospective study [abstract]. In: Proceedings of the AACR Special Conference in Cancer Research: Advances in Breast Cancer Research; 2023 Oct 19-22; San Diego, California. Philadelphia (PA): AACR; Cancer Res 2024;84(3 Suppl_1):Abstract nr A005.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2024
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 25, No. 16 ( 2019-08-15), p. 5069-5081
    Abstract: New strategies to restore sodium iodide symporter (NIS) expression and function in radioiodine therapy–refractive anaplastic thyroid cancers (ATCs) are urgently required. Recently, we reported the regulatory role of estrogen-related receptor gamma (ERRγ) in ATC cell NIS function. Herein, we identified DN200434 as a highly potent (functional IC50 = 0.006 μmol/L), selective, and orally available ERRγ inverse agonist for NIS enhancement in ATC. Experimental Design: We sought to identify better ERRγ-targeting ligands and explored the crystal structure of ERRγ in complex with DN200434. After treating ATC cells with DN200434, the change in iodide-handling gene expression, as well as radioiodine avidity was examined. ATC tumor–bearing mice were orally administered with DN200434, followed by 124I-positron emission tomography/CT (PET/CT). For radioiodine therapy, ATC tumor–bearing mice treated with DN200434 were administered 131I (beta ray–emitting therapeutic radioiodine) and then bioluminescent imaging was performed to monitor the therapeutic effects. Histologic analysis was performed to evaluate ERRγ expression status in normal tissue and ATC tissue, respectively. Results: DN200434–ERRγ complex crystallographic studies revealed that DN200434 binds to key ERRγ binding pocket residues through four-way interactions. DN200434 effectively upregulated iodide-handling genes and restored radioiodine avidity in ATC tumor lesions, as confirmed by 124I-PET/CT. DN200434 enhanced ATC tumor radioiodine therapy susceptibility, markedly inhibiting tumor growth. Histologic findings of patients with ATC showed higher ERRγ expression in tumors than in normal tissue, supporting ERRγ as a therapeutic target for ATC. Conclusions: DN200434 shows potential clinical applicability for diagnosis and treatment of ATC or other poorly differentiated thyroid cancers.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 6371-6371
    Abstract: Purpose: Several cell-free DNA (cf-DNA) features, such as genome-wide coverage, fragment size, and fragment end motif frequency, have shown their potentials for cancer detection. In this study, we developed two independent models, GC (gross chromatin), and FEMS (fragment end motif frequency and size). Each model uses images generated from genome-wide normalized sequencing coverage and cf-DNA fragment end motif frequencies according to the different cf-DNA size profiles. Then we integrated them into a single ensemble model to improve cancer detection and multi-cancer type classification accuracy. Methods: Low depth cf-WGS data was generated from 1,396 patients (stage I: 14.9%, stage II: 35.6%, stage III: 24.9%, stage IV: 24.2%, unknown: 0.4%) with breast (n=702), liver (n=213), esophageal (n=155), ovarian (n=151), pancreatic (n=85), lung (n=53), head and neck (n=16), biliary tract (n=15), and colon cancer (n=6) and 417 healthy individuals. Samples were randomly split into training, validation, and test set stratifying cancer type and stages. Cancer types with a small number of samples ( & lt;20) were excluded for multi-cancer type classification. Each model was trained using a convolutional neural network, then integrated into a single ensemble model by averaging the predicted probabilities calculated from each model. Results: For cancer detection, the ensemble model achieved sensitivities of 85.2% [95% confidence interval (CI): 71.8% to 94.5%], 74.9% (CI: 68.0% to 88.0%), 73.2% (CI: 66.7% to 85.9%) at a specificity of 95%, 98% and 99% and the AUC value of 0.97(CI: 0.95-0.99) in the test dataset. By the cancer stages, sensitivity was 62.8% (CI: 48.8% to 83.7%) in stage I, 66.3% (CI: 57.7% to 82.7%) in stage II, 85.9% (CI: 77.5% to 94.4%) in stage III, and 76.1% (CI: 63.4% to 87.3%) in stage IV at 99% specificity. For multi-cancer classification, the overall accuracy of 85.1% (CI: 80.4% to 89.3%) was achieved including 6 cancer types. Conclusions: Highly sensitive and accurate deep learning model for cancer detection and multi-cancer classification was generated by combining different types of cf-DNA features. This result provides the opportunity for general population multi-cancer screening using various cf-DNA features. Citation Format: Tae-Rim Lee, Jin Mo Ahn, Joo Hyuk Sohn, Sook Ryun Park, Min Hwan Kim, Gun Min Kim, Ki-Byung Song, Eunsung Jun, Dongryul Oh, Jeong-Won Lee, Joseph J Noh, Young Sik Park, Sun-Young Kong, Sang Myung Woo, Bo Hyun Kim, Eui Kyu Chie, Hyun-Cheol Kang, Youn Jin Choi, Ki-Won Song, Jeong-Sik Byeon, Junnam Lee, Dasom Kim, Chang-Seok Ki, Eunhae Cho. Deep learning algorithm for multi-cancer detection and classification using cf-WGS [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 6371.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 4009-4009
    Abstract: Distant metastasis is a main cause of death in follicular thyroid carcinoma (FTC) patients. Factors related to distant metastasis in FTC had been known as age, primary tumor size, and invasiveness. Ras mutations were also supposed to be associated with poor clinical outcomes. We analyzed Ras mutations in FTC with a distant metastasis (FTC M1, n=28), size matched-FTC without a distant metastasis (FTC M0, n=28), follicular adenoma (FA, n=17), and nodular hyperplasia (NH, n=12) to figure out the roles of Ras mutations in follicular thyroid carcinogenesis and metastasis. In addition, we assess the relationship between Ras mutations and clinical outcomes in FTC patients. NRAS, HRAS, and KRAS mutations were assessed using direct sequencing method. Among 85 patients, 39 patients (46%) had Ras mutations. NRAS codon 61 mutation (n=21; 25%) was the most common point mutation. HRAS codon 61, KRAS codon 12/13, and KRAS codon 61 mutations were found in 7, 6, and 4 patients, respectively. NRAS codon 12/13 mutation was found in only 1 patient, and HRAS codon 12/13 mutation was not found. Ras mutations were significantly more common in the FTC than FA or NH groups. Especially, NRAS codon 61 mutation was associated with distant metastasis in patients with FTC. However, there was no significant difference in survival between the Ras mutation positive-FTC and Ras mutation negative-FTC patients. Ras mutation, especially NRAS codon 61 mutation, was significantly associated with the presence of distant metastases. NRAS codon 61 mutation status might be a potential prognostic factor in FTC patients. Citation Format: MinJi Jeon, Eun Kyung Jang, Dong Eun Song, So Young Sim, Eui Young Kim, Yun Mi Choi, Ji Min Han, Won Gu Kim, Tae Yong Kim, Young Kee Shong, Won Bae Kim. N-ras codon 61 mutation is associated with distant metastasis in patients with follicular thyroid carcinoma. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 4009. doi:10.1158/1538-7445.AM2014-4009
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 6697-6697
    Abstract: Background Various cell-free DNA (cfDNA) features including methylation and genomic profiles have been investigated for their potential use in early cancer detection. We developed deep learning models based the data generated by the enzymatic conversion based whole methylome sequencing of cfDNA. Methods Cell-free whole genome Enzymatic Methyl sequencing(cfWEMseq) data were generated from 198 cancer patients (stage I: 11%, II: 17%, III: 22%, IV: 20%, unknown: 31%) and 69 healthy controls. The cancer types were consisted of breast (n=31), liver (n=24), esophageal (n=38), pancreatic (n=30), colon (n=34), ovarian (n=18), and lung (n=23). Sequence data was produced on average of 200 million reads using Novaseq 6000 (Illumina). For model training and evaluation, data partitioning was stratified by cancer type, and 5-fold cross validation was used. Coverage and methylation beta values ​​were calculated by binning at fixed size of 100K, 1M, and 5M base and variable size from Topologically Associated Domains (TAD). Genome Coverage (GC), Genome Methylation Beta values ​​(GMB), and Mutation Signature (MS) features were trained using a one-dimensional convolutional neural network (1D-CNN). The performance of the model was evaluated by measuring the average value of the results measured in each test set of 5 fold. Results We tested the cancer detection performance of various feature combinations using all data from cfWEMseq (n=267). Regardless of the bin size, the GMB single model achieved higher performance than the GC single model. The best-performing model is the ensemble model of GMB (100k bin) and MS. The cancer detection performance of this ensemble model reached an accuracy 96% (CI: 93.6% to 98.1%), AUC 0.99 (CI: 0.97 to 1.0) and sensitivity 98.0% (CI: 92.4% to 99.5%) with a specificity of 90%. Conclusions These results provide an opportunity for higher accuracies by integrating methylation information and genomic data using cfWEMseq. This research was supported through the National Research Foundation (NRF) funded by the Ministry of Science and ICT (2020M2D9A3094213). Citation Format: Juntae Park, Minjung Kim, Sook Ryun Park, Ki-Byung Song, Eunsung Jun, Dongryul Oh, Jeong-Won Lee, Young Sik Park, Ki-Won Song, Jeong-Sik Byeon, Bo Hyun Kim, Chang-Seok Ki, Eunhae Cho. Deep learning algorithm for cancer detection using multimodal characteristics of whole methylome sequencing of cf-DNA. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 6697.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2004
    In:  Cancer Research Vol. 64, No. 2 ( 2004-01-15), p. 644-651
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 64, No. 2 ( 2004-01-15), p. 644-651
    Abstract: Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), a natural product of Capsicum species, is known to induce excitation of nociceptive terminals involved in pain perception. Recent studies have also shown that capsaicin not only has chemopreventive properties against certain carcinogens and mutagens but also exerts anticancer activity. Here, we demonstrated the antiangiogenic activity of capsaicin using in vitro and in vivo assay systems. In vitro, capsaicin inhibited vascular endothelial growth factor (VEGF) -induced proliferation, DNA synthesis, chemotactic motility, and capillary-like tube formation of primary cultured human endothelial cells. Capsaicin inhibited both VEGF-induced vessel sprouting in rat aortic ring assay and VEGF-induced vessel formation in the mouse Matrigel plug assay. Moreover, capsaicin was able to suppress tumor-induced angiogenesis in chick chorioallantoic membrane assay. Capsaicin caused G1 arrest in endothelial cells. This effect correlated with the down-regulation of the expression of cyclin D1 that led to inhibition of cyclin-dependent kinase 4-mediated phosphorylation of retinoblastoma protein. Signaling experiments show that capsaicin inhibits VEGF-induced p38 mitogen-activated protein kinase, p125FAK, and AKT activation, but its molecular target is distinct from the VEGF receptor KDR/Flk-1. Taken together, these results demonstrate that capsaicin is a novel inhibitor of angiogenesis and suggest that it may be valuable to develop pharmaceutical drugs for treatment of angiogenesis-dependent human diseases such as tumors.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2004
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 6529-6529
    Abstract: Introduction: Immune checkpoint blockades (ICBs) have revolutionized cancer treatment and broadened clinical applicability. However, the majority of patients still fail to respond to standard ICBs. To overcome such unmet needs in a clinical study, we designed GI-101, combining the extracellular domain of CD80 serve as a CTLA-4 blockade and an IL-2 variant that preferentially binds the IL-2 receptor β subunit (IL-2Rβ) together. The harmonizing mechanisms of action are projected to translate into improved clinical benefits for this first-in-class immune checkpoint inhibitor fusion protein, even in non-inflamed “cold” tumors. Methods: Binding affinity of GI101 to IL2Rs, CTLA4, and CD28 was determined by SPR. Immune cell proliferation was analyzed by CFSE assay. In vivo anti-tumor efficacy was tested by single or combination treatment on CT26, MC38 and B16F10 syngeneic tumor models. To elucidate the involvement of GI101 on tumor microenvironment (TME), immune cell population was analyzed by flow cytometry from tumor. Tumor specific T cells (surrogate marker, gp70) were measured by splenocyte proliferation assay and IFN-γ ELISPOT assay. RNA sequencing was performed to elucidate immune mechanism of GI-101. Results: GI101 highly binds to CTLA-4 (Kd, 2.9 nM) which leads to the reinforcement of endogenous CD80 and CD28 interaction resulting in the activation of T cells. Bivalent IL-2 variant of GI101 triggers both CD8+ T and NK cells proliferation in vitro and in vivo without Tregs proliferation. GI101 has no evidence for toxicity associated with IL-2 activity including vascular leakage syndrome and cytokine storm in non-GLP monkey studies whereas isolated mortality was observed in the anti-PD-1 and anti-CTLA4 combination treatment group. GI101 elicits restoration of immune functions in vitro settings using mouse splenocytes co-cultured with different PDL-1 and CTLA-4 expression level tumor cells. A dose-dependent (3 to 12 mg/kg) inhibition of tumor growth was observed in CT26 syngeneic models without toxicity. Immune profiling of tumor samples also revealed that a robust increment of M1 macrophages, CD8+ central memory T cells (Tcm) and Ki-67+ proliferating T cells but not Tregs in TME (p & lt; 0.05). Tumor specific T cells were strongly proliferated when stimulated with CT26 neoantigens (gp70, RSPWFTTLI and MGPLIVLLL) in splenocyte. IFN-γ+ cells were significantly increased in draining lymph nodes from GI101 treated mice. Furthermore, drastic tumor regression was observed in MC38 tumor-bearing mice treated with GI101 and anti-PD-1 combination. Conclusion: GI101 facilitates the dual function of checkpoint blockade and IL2 activity that enhances the proliferation and activation of T and NK cells. This novel target drug is expected to be interpreted as superior clinical efficacy and safety as indicated even in ‘cold tumor' models. GI101 is the promising immune-oncology drug to replace the first-generation ICBs by single or combining with other immunotherapies. Our findings provide a rationale for further clinical investigations. Keywords: CD80, IL-2 variant, GI101, Bispecific fusion protein, immunotherapy Citation Format: Kyoung-Ho Pyo, Young Jun Koh, Chun-Bong Synn, Jae Chan Park, Jae-Hwan Kim, Yeongseon Byeon, Sung Eun Kim, Ji Min Lee, Ha Ni Jo, Wongeun Lee, Do Hee Kim, Sungwon Park, Yoo Jeong Song, Won Jae Lee, Ji Young Kim, Hyung Nam Ji, Sang Su Park, Kyung Wha Lee, Young Gyu Cho, Young Min Oh, Bo Gie Yang, Su Youn Nam, Myoung Ho Jang, Byoung Chul Cho. GI101, A novel CD80-IgG4-IL2 variant bispecific protein, inhibits tumor growth and induces anti-tumor immune response in multiple preclinical models [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 6529.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 3 ( 2016-02-01), p. 686-699
    Abstract: The Hsp90 facilitates proper folding of signaling proteins associated with cancer progression, gaining attention as a target for therapeutic intervention. The natural rotenoid deguelin was identified as an Hsp90 inhibitor, but concerns about neurotoxicity have limited prospects for clinical development. In this study, we report progress on deguelin analogues that address this limitation, focusing on the novel analogue SH-1242 as a candidate to broadly target human lung cancer cells, including those that are chemoresistant or harboring KRAS mutations. In a KRAS-driven mouse model of lung cancer, SH-1242 administration reduced tumor multiplicity, volume, and load. Similarly, in human cell line–based or patient-derived tumor xenograft models, SH-1242 induced apoptosis and reduced tumor vasculature in the absence of detectable toxicity. In contrast to deguelin, SH-1242 toxicity was greatly reduced in normal cells and when administered to rats did not produce obvious histopathologic features in the brain. Mechanistic studies revealed that SH-1242 bound to the C-terminal ATP-binding pocket of Hsp90, disrupting the ability to interact with its co-chaperones and clients and triggering a degradation of client proteins without affecting Hsp70 expression. Taken together, our findings illustrate the superior properties of SH-1242 as an Hsp90 inhibitor and as an effective antitumor and minimally toxic agent, providing a foundation for advancing further preclinical and clinical studies. Cancer Res; 76(3); 686–99. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 4790-4790
    Abstract: EGFR mutated lung cancer shows approximately 10-15% of non-small cell lung cancer (NSCLC). Although the best therapeutic EGFR tyrosine kinase inhibitors (TKIs) targeting mutant EGFR, such as gefitinib and erlotinib, are used in the first line treatment of patients with advanced EGFR mutated NSCLC, the acquired resistance to the drugs usually appears in 10-12 months of therapy by the occurrence of a second EGFR mutation T790M. YH25448, a highly mutant-selective and irreversible 3rd generation EGFR TKI potently penetrating blood-brain barrier (BBB) penetration, targets both activating EGFR mutations Del19, L858R and T790M mutation while sparing wild type. In NSCLC cell lines and primary cancer cells from patients harboring EGFR mutations, YH25448 showed more potent inhibition of cancer cell growth and significantly increased tumor cell apoptosis compared to osimertinibs, which is one of 3rd generation EGFR TKIs. In vivo mouse model implanted with H1975 cells, YH25448 treatment at the once-daily showed a dramatic dose-dependent tumor regression in both subcutaneous and intracranial lesions with no abnormal signs such as skin keratosis shown in osimertinib-treated mice. Plasma half life of YH25448 was 5.9-6.8 hr and tumor to plasma AUC0-last ratio was 3.0-5.1 in tumor bearing mice. YH25448 also showed excellent penetration of the BBB, achieving CSF concentrations exceeding the IC50 value for pEGFR inhibition in the tumor-bearing mice. Taken together, these findings suggest important role for the further development of YH25448 as a novel therapeutic for the treatment of EGFR mutant-positive NSCLC patients with brain metastases. Citation Format: Jiyeon Yun, Min Hee Hong, Seok-Young Kim, Chae Won Park, So-Young Kim, Mi Ran Yun, Han Na Kang, Kyoung-Ho Pyo, Jong Sung Koh, Ho-Juhn Song, Young- Sung Lee, Se-Woong Oh, Soongyu Choi, Byoung-Chul Cho. YH25448, an irreversible 3rd generation EGFR TKI, exhibits superior anticancer effects with potent brain BBB penetration in NSCLC [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 4790.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 652-652
    Abstract: Introduction: Papillary thyroid microcarcinoma (PTMC) has excellent clinical outcomes, but distant metastasis of PTMC can be fatal. We previously reported that change to an aggressive pathologic subtype of metastatic lymph nodes (LNs) were associated with distant metastasis of PTMC. This study aimed to evaluate and compare the mutational profile of primary tumor and metastatic LNs of PTMC. Method: We included 16 PTMC patients with lateral cervical LN metastases. One of them has distant metastases. DNAs from formalin-fixed, paraffin-embedded archival samples of 16 sets of the normal thyroid tissue, primary PTMC, and the largest metastatic LN were used for targeted next-generation sequencing by Oncopanel AMC version 2.0. Results: A total of 7 somatic variants were confirmed in primary PTMC compared to normal thyroid tissue. BRAF V600E mutation was the most common and seen in 12 primary PTMCs (75%) and 11 metastatic LNs (69%). Missense mutation of KMT2A, RAF1, and ROS1 was detected only in one primary PTMC (6.3%), respectively. Frame-shift mutation of JAK2, inframe deletion of ACVR2A and nonsense mutation of AR was detected one primary PTMC (6.3%) with its metastatic LN, respectively. When we compare the mutational profile of primary tumor and metastatic LNs, there were no newly developed somatic mutations in metastatic LNs. We also found ALK/STRN rearrangement in one PTMC with its metastatic LN (6.3%). CCDC6/RET rearrangement and RET intergenic rearrangement was detected only in 2 metastatic LNs (12.5%) and one metastatic LN (6.3%), respectively. BARD1 deletion was detected in one primary PTMC with its metastatic LNS (6.3%) and FLT4 deletion was detected only in one primary PTMC (6.3%). We also found JAK1, AURKC, and TP53 deletions, which were detected only in one metastatic LN, respectively (6.3%). Conclusion: The mutation frequency of PTMC was really low even in patients with extensive LN metastasis. The mutational status of primary tumor and their regional metastatic LNs were not significantly different and this suggests the minor role of genetic mutations in the process of LN metastases. Citation Format: Min Ji Jeon, Won Gu Kim, Sung Min Chun, Dong Eun Song, Tae Yong Kim, Young Kee Shong, Won Bae Kim. Mutational profile of papillary thyroid microcarcinoma with extensive lymph node metastasis: Comparison of primary thyroid cancer and metastatic lymph nodes [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 652.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...