GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (1)
Material
Publisher
  • American Association for Cancer Research (AACR)  (1)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2006
    In:  Cancer Research Vol. 66, No. 11 ( 2006-06-01), p. 5686-5695
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 66, No. 11 ( 2006-06-01), p. 5686-5695
    Abstract: The transforming growth factor-β superfamily member activin and its antagonist, follistatin, act as a pleiotropic growth factor system that controls cell proliferation, differentiation, and apoptosis. Activin inhibits fibroblast growth factor 2–induced sprouting angiogenesis in vitro (spheroidal angiogenesis assay) and in vivo (Matrigel assay). To further study the role of the activin/follistatin system during angiogenesis and tumor progression, activin- and follistatin-expressing R30C mammary carcinoma cells were studied in mouse tumor experiments. Surprisingly, activin-expressing tumors grew much faster than follistatin-expressing tumors although they failed to induce increased angiogenesis (as evidenced by low microvessel density counts). Conversely, follistatin-expressing tumors were much smaller but had a dense network of small-diameter capillaries. Qualitative angioarchitectural analyses (mural cell recruitment, perfusion) revealed no major functional differences of the tumor neovasculature. Analysis of activin- and follistatin-expressing R30C cells identified a cell autonomous role of this system in controlling tumor cell growth. Whereas proliferation of R30C cells was not altered, follistatin-expressing R30C cells had an enhanced susceptibility to undergo apoptosis. These findings in experimental tumors are complemented by an intriguing case report of a human renal cell carcinoma that similarly shows a dissociation of angiogenesis and tumorigenesis during tumor progression. Collectively, the data shed further light into the dichotomous stimulating and inhibiting roles that the activin/follistatin system can exert during angiogenesis and tumor progression. Furthermore, the experiments provide a critical proof-of-principle example for the dissociation of angiogenesis and tumorigenesis, supporting the concept that tumor growth may not be dependent on increased angiogenesis as long as a minimal intratumoral microvessel density is maintained. (Cancer Res 2006; 66(11): 5686-95)
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2006
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...