GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Association for Cancer Research (AACR)  (3)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 2088-2088
    Kurzfassung: Genocea’s ATLAS platform is an empirical bioassay that uses patient autologous immune cells to identify both true neoantigens and Inhibigens࣪ for inclusion in or exclusion from neoantigen-targeted vaccines and cell therapies, respectively. In ATLAS, patient-derived antigen-presenting cells (APCs) are pulsed with E. coli expressing individual mutations identified from the patient mutanome ± listeriolysin O, enabling interrogation of both CD8+ and CD4+ T cell recognition. True neoantigens induce T cell activation and cytokine release, while Inhibigens lead to a downregulation of T cell responses and thus can promote tumor growth. Previous ATLAS screening of CD8+ T cells from mice carrying B16F10 mouse melanoma tumors identified both neoantigens and Inhibigens. Upon therapeutic vaccination, adjuvanted neoantigens generated immunogenicity and anti-tumor efficacy1. In contrast, therapeutic vaccination with multiple ATLAS-identified Inhibigens, alone or in combination with an otherwise-protective vaccine, led to accelerated tumor growth, impaired T cell responses, and abrogated tumor immune infiltration. Our current study further explores the mechanism of Inhibigen-specific responses through adoptive transfer of vaccine-experienced T cells into tumor-bearing recipient mice, as well as through analysis of T cell gene expression. Additionally, in order to determine whether Inhibigen identification and treatment translates into pro-tumor effects universally across tumor models, we performed ATLAS screening on CD4+ and CD8+ T cells isolated from mice bearing orthotopic KPC pancreatic cancer. Out of 73 total non-synonymous mutations, we successfully identified 14 CD4+ and 15 CD8+ true neoantigens, and 16 CD4+ and 18 CD8+ Inhibigens. This is the first known comprehensive characterization of endogenous antigens in this model. Therapeutic administration of neoantigens as adjuvanted peptide vaccines in KPC tumor-bearing mice led to smaller tumor sizes and reduced ascites volumes, whereas Inhibigen vaccination accelerated tumor growth. Mouse studies are ongoing and additional data will be presented. Taken together, our data from human cancer patients and two mouse cancer models support the importance of appropriate neoantigen selection and Inhibigen identification and exclusion from cancer therapies. Genocea’s GEN-011 neoantigen-targeted peripheral T cell (NPT) therapy candidate, designed using ATLAS-identified neoantigens and omitting Inhibigens, is being evaluated in an ongoing clinical trial (NCT04596033). Continued exploration of mechanisms of action of Inhibigen-specific responses may reveal new paradigms of cancer immune evasion. 1H Lam et al, Cancer Discov 2021;11:1-18 Citation Format: Hanna S. Starobinets, Victoria L. DeVault, Zoe C. Schmiechen, Ebony A. Miller, Eduardo Cruz, Meagan R. Rollins, Adam L. Burrack, Stephanie J. Rinaldi, Julie Arnold, Emily Tjon, Kyle Gonzalez, Dimitry Lineker, Hubert Lam, Ingunn M. Stromnes, Jessica B. Flechtner. ATLAS-identified Inhibigen-specific responses accelerate tumor growth in mouse melanoma and pancreatic cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2088.
    Materialart: Online-Ressource
    ISSN: 1538-7445
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2022
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. NG12-NG12
    Kurzfassung: Background: Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy that is resistant to conventional therapies including monotherapy using PD-1 or PD-L1 inhibition. Combination agonistic anti-CD40 and PD-1/PD-L1 blockade have clinical promise in advanced cancer patients including PDA. The underlying mechanism(s) driving the therapeutic effects of this combination are ill-defined. Here, we create a syngeneic PDA animal model and utilize various genetic tools to assess how CD40 agonist, PD-L1 blockade or the combination impact tumor antigen-specific T cells using fluorescently-labeled peptide:MHC tetramers and cells in the tumor microenvironment. Molecular analyses of tumor cell escape variants is also performed. Methods: We recently developed a high-throughput orthotopic syngeneic KPC pancreatic cancer mouse model that expresses a novel model neoantigen in B6 mice described in Burrack et al., Cell Reports, 2019. We create fluorescently labeled peptide:H-2Db tetramers to track the fate of endogenous pancreatic tumor-antigen specific CD8+ T cells over time. Here, we use this model alone or mixed at a 1:1 ratio of KPC tumor cells that do not express the neoantigen to examine how agnostic anti-CD40 (a single dose, clone FGK145), anti-PDL1 (3 doses, clone 10F.932), or the combination impact tumor growth in the pancreas over time using bioluminescent imaging and high-resolution ultrasound. We use multiparameter flow cytometry to investigate how anti-CD40 +/- PD-L1 blockade impacts the phenotype, longevity and functionality of tetramer-binding T cells over time. We assess how other immune cell lineages are altered systemically and in the tumor microenvironment by quantifying myeloid subpopulations, B cells, NK cells and regulatory T cells following therapy. We use Batf3-/- mice and XCR1VenusDTR mice to assess the role of conventional type I dendritic cells (cDC1s) on therapeutic efficacy. We employ both cytokine and chemokine reporter strains to identify how anti-CD40 +/- PD-L1 blockade impacts inflammatory gene expression in immune cells enriched the tumor microenvironment. We examine the persistence and location of tetramer-binding T cells in the pancreas, lung and liver of mice following tumor eradication. Additionally, we re-derive resistant tumor cells from mice and evaluate the integrity of MHC class I antigen processing and presentation pathways. Finally, single cell sequencing is performed to assess the traits of subpopulations of tumor-antigen specific T cells that correlate with enhanced antitumor activity following therapy. Results: We show that anti-CD40 or anti-PD-L1 monotherapy have significant yet transient antitumor effects in mice with neoantigen+ PDA with distinct effects on tumor specific T cells. Objective responses occur in 100% of the monotherapy treated mice and survival is significantly prolonged. However, tumors recur in 100% of these animals. Tumor escape variants defective in MHC class I protein and Tap1 gene expression following IFN-gamma treatment ultimately emerge. In contrast, combination agonistic anti-CD40 + PD-L1 blockade synergize therapeutically resulting in cures in 60% of the animals and formation of pancreas resident memory T cells that specifically bind tetramer and express CD49a and CD103 following tumor eradication. Mechanistically, the combination selectively expands conventional type 1 dendritic cells (cDC1s) in the spleens and tumors of tumor-bearing animals. cDC1s in PDA are CD11c+MHCII+ and express CD8, CD103 and Xcr1. Using Batf3-/- mice or an Xcr1venusDTR transient cDC1 depletion model, we demonstrate a striking dependency on cDC1s for therapeutic benefit with anti-CD40 or PD-L1 blockade. Unexpectedly, we find that the expansion of cDC1s in pancreatic tumor-bearing animals is partially dependent on Xcr1 expression by DCs. Anti-CD40+PD-L1 blockade significantly expand the number of tetramer-binding T cells that express KLRG1 in PDA. The tetramer-binding T cells remain PD-1+ yet have lower expression of Lag3 and have heightened polyfunctionality as measured by cytokine production. Further studies using chemokine and cytokine reporter models, we uncover key differences in how anti-CD40 and anti-PD-L1 impact inflammatory gene expression by antigen presenting cells in PDA. Finally, we demonstrate the requirement for tumor neoantigen expression for efficacy because in mice that have tumors containing a 50:50 mixture of neoantigen+ pancreatic tumor cells with neoantigen- pancreatic tumor cells, combination anti-CD40 + PD-L1 blockade results in elimination of predominantly those tumor cells that express the neoantigen. Further single cell sequencing data on how this combination impacts tumor-antigen specific T cell subpopulations as well as epitope spreading will be discussed. Conclusions: These findings reveal for the first time to our knowledge that anti-CD40 + PD-L1 blockade synergize via the expansion of cDC1s in pancreatic tumor-bearing animals. Instead of anti-CD40 promoting priming of neoantigen-specific T cells, we find that this combination promotes the systemic expansion and intratumoral accumulation of KLRG1+ tumor-specific T cells that eradicate PDA and form pancreas resident CD49a+CD103+ memory T cells. Citation Format: Adam L. Burrack, Meagan R. Rollins, Ellen J. Spartz, Jackson F. Raynor, Iris Wang, Jason Mitchell, Tsuneyasu Kaisho, Brian Fife, Ross Kedl, Stephen Shen, Ingunn M. Stromnes. Mechanisms governing efficacy of combination CD40 agonist and anti-PD-L1 in pancreatic ductal adenocarcinoma [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr NG12.
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2020
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 2137-2137
    Kurzfassung: The endosteal niche is a component of the bone marrow microenvironment that can serve to protect hematological malignancies such as acute myeloid leukemia (AML) from standard chemotherapies such as cytarabine (Ara-C). Surviving AML cells harbored by this niche can eventually lead to relapse. The endosteal niche is rich in osteoblast lineage cells. U937 or KG1a AML cell lines were cultured with or without osteoblast lineage cells (MC3T3 or W-20-17 cell lines), challenged with doses of 0µM, 0.1µM, 0.5µM, 1µM, 5µM, or 10µM of Ara-C, and assayed for apoptosis via annexin-V staining and flow cytometry. Osteoblast lineage cells (MC3T3 or W-20-17 cell lines) were able to protect AML cells (U937 or KG1a cell lines) from Ara-C-induced apoptosis. Histone deacetylase inhibitors (HDACi) globally alter gene expression within cells. When we pre-treated osteoblast lineage cells (MC3T3) with the HDACi vorinostat (suberoylanilide hydroxamic acid, SAHA), it reduced the ability of the osteoblast lineage cells (MC3T3) to protect AML cells (U937) from Ara-C-induced apoptosis, which we have previously confirmed in the KG1a AML cell line as well. This indicates that osteoblast lineage cell-mediated protection of AML from Ara-C occurs via an HDACi sensitive mechanism. To begin to further explore the mechanism of action, we co-cultured AML cells (KG1a or U937) with and without osteoblast lineage cells (MC3T3) in the presence or absence of a transwell. We found that the presence of the transwell reduced the osteoblast lineage cell-mediated protection, indicating that osteoblast lineage cell-mediated protection of AML from Ara-C is cell contact dependent. Thus, osteoblast lineage cells can protect AML cells from Ara-C induced apoptosis, this protection can be reduced by pre-treatment of the osteoblast lineage cells with the HDACi vorinostat, and osteoblast lineage cell-mediated protection from Ara-C is cell contact dependent. These studies begin to characterize the mechanisms of osteoblast lineage cell-mediated protection of AML from Ara-C. Manipulating the protective properties of osteoblast lineage cells of the endosteal niche may help make AML cells more susceptible to chemotherapeutics. Therefore, developing combination therapies that target the protective mechanisms of osteoblast-lineage cells may help to further deplete the bone marrow microenvironment of AML cells and prevent relapse of disease. Citation Format: Rosalie M. Sterner, Kimberly N. Kremer, Meagan R. Rollins, Amel Dudakovic, Jennifer J. Westendorf, Andre J. van Wijnen, Karen E. Hedin. Osteoblast-lineage cells protect AML cells from cytarabine-induced apoptosis via a mechanism sensitive to HDACi and reduced cell-cell contact [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 2137.
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2018
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...