GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
Material
Publisher
  • American Association for Cancer Research (AACR)  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2022
    In:  Cancer Discovery Vol. 12, No. 12 ( 2022-12-02), p. 2820-2837
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 12, No. 12 ( 2022-12-02), p. 2820-2837
    Abstract: Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM's natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A–FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow–derived macrophages through activation of the FOSL2–ANXA1–FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration. Significance: GBM progression could be induced by hypoxia via the HIF1A–FOSL2 axis. Tumor-derived ANXA1 is associated with recruitment and polarization of bone marrow–derived macrophages to suppress the immunoenvironment. The polarized macrophages promote tumor cell NES transition and migration. This article is highlighted in the In This Issue feature, p. 2711
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 22, No. 9 ( 2023-09-05), p. 1013-1027
    Abstract: HER3 is a unique member of the EGFR family of tyrosine kinases, which is broadly expressed in several cancers, including breast, lung, pancreatic, colorectal, gastric, prostate, and bladder cancers and is often associated with poor patient outcomes and therapeutic resistance. U3-1402/Patritumab-GGFG-DXd is the first successful HER3-targeting antibody–drug conjugate (ADC) with clinical efficacy in non–small cell lung cancer. However, over 60% of patients are nonresponsive to U3-1402 due to low target expression levels and responses tend to be in patients with higher target expression levels. U3-1402 is also ineffective in more challenging tumor types such as colorectal cancer. AMT-562 was generated by a novel anti-HER3 antibody Ab562 and a modified self-immolative PABC spacer (T800) to conjugate exatecan. Exatecan showed higher cytotoxic potency than its derivative DXd. Ab562 was selected because of its moderate affinity for minimizing potential toxicity and improving tumor penetration purposes. Both alone or in combination therapies, AMT-562 showed potent and durable antitumor response in low HER3 expression xenograft and heterogeneous patient-derived xenograft/organoid models, including digestive system and lung tumors representing of unmet needs. Combination therapies pairing AMT-562 with therapeutic antibodies, inhibitors of CHEK1, KRAS, and tyrosine kinase inhibitor showed higher synergistic efficacy than Patritumab-GGFG-DXd. Pharmacokinetic and safety profiles of AMT-562 were favorable and the highest dose lacking severe toxicity was 30 mg/kg in cynomolgus monkeys. AMT-562 has potential to be a superior HER3-targeting ADC with a higher therapeutic window that can overcome resistance to generate higher percentage and more durable responses in U3-1402–insensitive tumors.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...