GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (160)
  • 1
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 32, No. 3 ( 2023-03-06), p. 353-362
    Abstract: Polygenic risk scores (PRS) which summarize individuals’ genetic risk profile may enhance targeted colorectal cancer screening. A critical step towards clinical implementation is rigorous external validations in large community-based cohorts. This study externally validated a PRS-enhanced colorectal cancer risk model comprising 140 known colorectal cancer loci to provide a comprehensive assessment on prediction performance. Methods: The model was developed using 20,338 individuals and externally validated in a community-based cohort (n = 85,221). We validated predicted 5-year absolute colorectal cancer risk, including calibration using expected-to-observed case ratios (E/O) and calibration plots, and discriminatory accuracy using time-dependent AUC. The PRS-related improvement in AUC, sensitivity and specificity were assessed in individuals of age 45 to 74 years (screening-eligible age group) and 40 to 49 years with no endoscopy history (younger-age group). Results: In European-ancestral individuals, the predicted 5-year risk calibrated well [E/O = 1.01; 95% confidence interval (CI), 0.91–1.13] and had high discriminatory accuracy (AUC = 0.73; 95% CI, 0.71–0.76). Adding the PRS to a model with age, sex, family and endoscopy history improved the 5-year AUC by 0.06 (P & lt; 0.001) and 0.14 (P = 0.05) in the screening-eligible age and younger-age groups, respectively. Using a risk-threshold of 5-year SEER colorectal cancer incidence rate at age 50 years, adding the PRS had a similar sensitivity but improved the specificity by 11% (P & lt; 0.001) in the screening-eligible age group. In the younger-age group it improved the sensitivity by 27% (P = 0.04) with similar specificity. Conclusions: The proposed PRS-enhanced model provides a well-calibrated 5-year colorectal cancer risk prediction and improves discriminatory accuracy in the external cohort. Impact: The proposed model has potential utility in risk-stratified colorectal cancer prevention.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 32, No. 3 ( 2023-03-06), p. 315-328
    Abstract: Tobacco smoking is an established risk factor for colorectal cancer. However, genetically defined population subgroups may have increased susceptibility to smoking-related effects on colorectal cancer. Methods: A genome-wide interaction scan was performed including 33,756 colorectal cancer cases and 44,346 controls from three genetic consortia. Results: Evidence of an interaction was observed between smoking status (ever vs. never smokers) and a locus on 3p12.1 (rs9880919, P = 4.58 × 10−8), with higher associated risk in subjects carrying the GG genotype [OR, 1.25; 95% confidence interval (CI), 1.20–1.30] compared with the other genotypes (OR & lt;1.17 for GA and AA). Among ever smokers, we observed interactions between smoking intensity (increase in 10 cigarettes smoked per day) and two loci on 6p21.33 (rs4151657, P = 1.72 × 10−8) and 8q24.23 (rs7005722, P = 2.88 × 10−8). Subjects carrying the rs4151657 TT genotype showed higher risk (OR, 1.12; 95% CI, 1.09–1.16) compared with the other genotypes (OR & lt;1.06 for TC and CC). Similarly, higher risk was observed among subjects carrying the rs7005722 AA genotype (OR, 1.17; 95% CI, 1.07–1.28) compared with the other genotypes (OR & lt;1.13 for AC and CC). Functional annotation revealed that SNPs in 3p12.1 and 6p21.33 loci were located in regulatory regions, and were associated with expression levels of nearby genes. Genetic models predicting gene expression revealed that smoking parameters were associated with lower colorectal cancer risk with higher expression levels of CADM2 (3p12.1) and ATF6B (6p21.33). Conclusions: Our study identified novel genetic loci that may modulate the risk for colorectal cancer of smoking status and intensity, linked to tumor suppression and immune response. Impact: These findings can guide potential prevention treatments.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 17 ( 2016-09-01), p. 5103-5114
    Abstract: Identifying genetic variants with pleiotropic associations can uncover common pathways influencing multiple cancers. We took a two-stage approach to conduct genome-wide association studies for lung, ovary, breast, prostate, and colorectal cancer from the GAME-ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic loci. Findings were replicated in independent association studies (55,789 cases, 330,490 controls). We identified a novel pleiotropic association at 1q22 involving breast and lung squamous cell carcinoma, with eQTL analysis showing an association with ADAM15/THBS3 gene expression in lung. We also identified a known breast cancer locus CASP8/ALS2CR12 associated with prostate cancer, a known cancer locus at CDKN2B-AS1 with different variants associated with lung adenocarcinoma and prostate cancer, and confirmed the associations of a breast BRCA2 locus with lung and serous ovarian cancer. This is the largest study to date examining pleiotropy across multiple cancer-associated loci, identifying common mechanisms of cancer development and progression. Cancer Res; 76(17); 5103–14. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 881-881
    Abstract: Colorectal cancer (CRC) is a leading cause of cancer death, yet many CRC deaths are preventable via CRC screening. Currently only age and family history are used to define screening eligibility. However, CRC risk varies substantially in the population. In recent years polygenic risk scores (PRS) have gained attention as powerful risk prediction tool to personalize interventions. PRS provides a quantitative measure of an individual's inherited risk based on the cumulative effect of many genetic risk variants. Here, we benchmark several genome wide PRS techniques to select the best performing models in CRC risk prediction. We built CRC risk prediction models that incorporate genome-wide genotype data from large-scale research studies (55,105 cases and 65,079 controls, European ancestries) with the imputed genetic data on over 40 million variants. The risk prediction models were externally evaluated in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort, including 101,987 genotyped individuals within the Kaiser Permanente Northern California (KPNC) integrated healthcare delivery system. We built genome-wide PRS using various methods including known CRC risk variants, thresholding and pruning followed by machine learning approaches (ML), LDpred, improved LDpred2, SBayesR, PRS-CS, Lassosum and empirical Bayes. Among 55,033 individuals of European ancestry in the GERA cohort, we evaluated the performance of models in terms of the age and sex-adjusted AUC. We showed that LDpred, LDpred2, LDpred2-sparse, SBayesR and PRS-CS perform equally well in terms of discriminatory accuracy (AUC=0.65). In addition, the PRS developed using the above-mentioned techniques identified the top 30% of the GERA European population has a hazard ratio estimate of ~2.2 on CRC risk, which is comparable to that for having an affected first-degree relative. The developed CRC PRSs will provide way for risk-stratified CRC screening and other targeted interventions. PRS derivation methodsNo. of variantsAUC(1,311 cases and 53,722 controls)Hazard ratio estimates (CI)Top 30% of population vs. remainingKnown variants1400.631.92 (1.75-2.23)PT Clumping + ML (Ridge)10,0000.631.94 (1.72-2.19)LDpred1.2M0.652.20 (1.94-2.47)LDPred21.2M0.652.20 (1.93-2.45)LDpred2 Sparse530K0.652.20 (1.90-2.41)SBayesR1.2M0.652.20 (1.88-2.38)PRS-CS1.2M0.652.20 (1.91-2.43)Lassosum1.2M0.621.76 (1.56-2.58)EBPRS1.2M0.621.81 (1.66-2.11)AUC based on family history in GERA cohort is 0.54 Citation Format: Minta Thomas, Lori C Sakoda, Jeffrey K Lee, Mark A Jenkins, Andrea Burnett-Hartman, Heather Hampel, Elisabeth A Rosenthal, Hermann Brenner, Jenny Chang-Claude, Marc J Gunter, Polly A Newcomb, Steven Gallinger, Tabitha A Harrison, Graham Casey, Victor Moreno, Gail P Jarvik, Stephen B Gruber, Robert E Schoen, Andrew T Chan, Richard B Hayes, Douglas A Corley, Ulrike Peters, Li Hsu. Benchmarking genome-wide polygenic risk score development techniques in colorectal cancer risk prediction [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 881.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 1300-1300
    Abstract: To date, genome-wide association studies (GWAS) have reported common variants in over 50 loci with weak to moderate effects on CRC risk. These genetic factors in aggregate explain only a small fraction of familial risk of CRC. To aid in the discovery of novel CRC loci, we integrated large transcriptome data, including those generated in the Genotype-Tissue Expression (GTEx) Project in genetic association analyses of CRC. The computational method, PrediXcan, was used to predict transcript levels in relevant tissues and perform gene-level association tests with CRC. Prediction models were developed using whole blood transcriptomes (n=922) from the depression genes and networks (DGN), as well as colon transcriptomes (transverse n=169 and sigmoid n=124) from GTEx datasets, along with high-density genotyping data from the same subjects. Genetically determined expression levels were tested for association with CRC in 12,186 cases and 14,718 controls from GECCO-CCFR and suggestive associations (false discovery rate = 0.2) were evaluated in 7,481 cases and 17,796 controls from the Asia Colorectal Cancer Consortium (ACCC) and 22,974 cases and 14,392 controls from the Colorectal Transdisciplinary (CORECT) study. We attempted to replicate novel associations for eight genes and found statistically significant associations with CXCR1 (OR=1.21 (1.10-1.33), p-value=7.8x10-5) and CXCR2 (OR=1.24 (1.11-1.38), p-value=9.9x10- 5). We also recovered previous associations at six known GWAS loci, thereby providing additional support for putative target genes. CXCR1 and CXCR2 are therapeutic targets for the anticancer agent Reparixin, which is currently being investigated in a stage II clinical trial for triple negative breast cancer. As such, these findings provide preliminary support for new molecular targets that could potentially repurpose a putative cancer therapeutic. These findings highlight the utility integrating transcriptome data for novel discovery and biological insight of risk loci. Citation Format: Stephanie A. Bien, Xingyi Guo, Yu-Ru Su, Tabitha A. Harrison, Conghui Qu, Yingchang Lu, Jiron Long, Sai Chen, Andrew T. Chan, David V. Conti, Hyun M. Kang, Michael Hoffmeister, Thomas J. Hudson, Mark A. Jenkins, Loic Le Marchand, Polly A. Newcomb, Martha L. Slattery, Emily White, Goncalo R. Abeçasis, Stephen B. Gruber, Deborah A. Nickerson, Stephanie L. Schmit, Graham Casey, Li Hsu, Wei Zheng, Ulrike Peters, GECCO-CCFR-AAAC-CORECT. Genetic predictors of gene expression associated with risk of colorectal cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1300. doi:10.1158/1538-7445.AM2017-1300
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 30, No. 3 ( 2021-03-01), p. 564-575
    Abstract: Evidence for aspirin's chemopreventative properties on colorectal cancer (CRC) is substantial, but its mechanism of action is not well-understood. We combined a proteomic approach with Mendelian randomization (MR) to identify possible new aspirin targets that decrease CRC risk. Methods: Human colorectal adenoma cells (RG/C2) were treated with aspirin (24 hours) and a stable isotope labeling with amino acids in cell culture (SILAC) based proteomics approach identified altered protein expression. Protein quantitative trait loci (pQTLs) from INTERVAL (N = 3,301) and expression QTLs (eQTLs) from the eQTLGen Consortium (N = 31,684) were used as genetic proxies for protein and mRNA expression levels. Two-sample MR of mRNA/protein expression on CRC risk was performed using eQTL/pQTL data combined with CRC genetic summary data from the Colon Cancer Family Registry (CCFR), Colorectal Transdisciplinary (CORECT), Genetics and Epidemiology of Colorectal Cancer (GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls). Results: Altered expression was detected for 125/5886 proteins. Of these, aspirin decreased MCM6, RRM2, and ARFIP2 expression, and MR analysis showed that a standard deviation increase in mRNA/protein expression was associated with increased CRC risk (OR: 1.08, 95% CI, 1.03–1.13; OR: 3.33, 95% CI, 2.46–4.50; and OR: 1.15, 95% CI, 1.02–1.29, respectively). Conclusions: MCM6 and RRM2 are involved in DNA repair whereby reduced expression may lead to increased DNA aberrations and ultimately cancer cell death, whereas ARFIP2 is involved in actin cytoskeletal regulation, indicating a possible role in aspirin's reduction of metastasis. Impact: Our approach has shown how laboratory experiments and population-based approaches can combine to identify aspirin-targeted proteins possibly affecting CRC risk.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 15 ( 2023-08-01), p. 2572-2583
    Abstract: Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Gene-environment interactions (G × E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G × E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G × E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G × E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant G×BMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer. Significance: This gene-environment interaction analysis revealed a genetic locus in FMN1/GREM1 that interacts with body mass index in colorectal cancer risk, suggesting potential implications for precision prevention strategies.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 31, No. 5 ( 2022-05-04), p. 1077-1089
    Abstract: Currently known associations between common genetic variants and colorectal cancer explain less than half of its heritability of 25%. As alcohol consumption has a J-shape association with colorectal cancer risk, nondrinking and heavy drinking are both risk factors for colorectal cancer. Methods: Individual-level data was pooled from the Colon Cancer Family Registry, Colorectal Transdisciplinary Study, and Genetics and Epidemiology of Colorectal Cancer Consortium to compare nondrinkers (≤1 g/day) and heavy drinkers ( & gt;28 g/day) with light-to-moderate drinkers (1–28 g/day) in GxE analyses. To improve power, we implemented joint 2df and 3df tests and a novel two-step method that modifies the weighted hypothesis testing framework. We prioritized putative causal variants by predicting allelic effects using support vector machine models. Results: For nondrinking as compared with light-to-moderate drinking, the hybrid two-step approach identified 13 significant SNPs with pairwise r2 & gt; 0.9 in the 10q24.2/COX15 region. When stratified by alcohol intake, the A allele of lead SNP rs2300985 has a dose–response increase in risk of colorectal cancer as compared with the G allele in light-to-moderate drinkers [OR for GA genotype = 1.11; 95% confidence interval (CI), 1.06–1.17; OR for AA genotype = 1.22; 95% CI, 1.14–1.31], but not in nondrinkers or heavy drinkers. Among the correlated candidate SNPs in the 10q24.2/COX15 region, rs1318920 was predicted to disrupt an HNF4 transcription factor binding motif. Conclusions: Our study suggests that the association with colorectal cancer in 10q24.2/COX15 observed in genome-wide association study is strongest in nondrinkers. We also identified rs1318920 as the putative causal regulatory variant for the region. Impact: The study identifies multifaceted evidence of a possible functional effect for rs1318920.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 29, No. 9 ( 2020-09-01), p. 1800-1808
    Abstract: Regular use of nonsteroidal anti-inflammatory drugs (NSAID) is associated with lower risk of colorectal cancer. Genome-wide interaction analysis on single variants (G × E) has identified several SNPs that may interact with NSAIDs to confer colorectal cancer risk, but variations in gene expression levels may also modify the effect of NSAID use. Therefore, we tested interactions between NSAID use and predicted gene expression levels in relation to colorectal cancer risk. Methods: Genetically predicted gene expressions were tested for interaction with NSAID use on colorectal cancer risk among 19,258 colorectal cancer cases and 18,597 controls from 21 observational studies. A Mixed Score Test for Interactions (MiSTi) approach was used to jointly assess G × E effects which are modeled via fixed interaction effects of the weighted burden within each gene set (burden) and residual G × E effects (variance). A false discovery rate (FDR) at 0.2 was applied to correct for multiple testing. Results: Among the 4,840 genes tested, genetically predicted expression levels of four genes modified the effect of any NSAID use on colorectal cancer risk, including DPP10 (PG×E = 1.96 × 10−4), KRT16 (PG×E = 2.3 × 10−4), CD14 (PG×E = 9.38 × 10−4), and CYP27A1 (PG×E = 1.44 × 10−3). There was a significant interaction between expression level of RP11-89N17 and regular use of aspirin only on colorectal cancer risk (PG×E = 3.23 × 10−5). No interactions were observed between predicted gene expression and nonaspirin NSAID use at FDR & lt; 0.2. Conclusions: By incorporating functional information, we discovered several novel genes that interacted with NSAID use. Impact: These findings provide preliminary support that could help understand the chemopreventive mechanisms of NSAIDs on colorectal cancer.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 23, No. 12 ( 2014-12-01), p. 2971-2976
    Abstract: Background: Calcium intake may reduce risk of colorectal cancer, but the mechanisms remain unclear. Studies of interaction between calcium intake and SNPs in calcium-related pathways have yielded inconsistent results. Methods: To identify gene–calcium interactions, we tested interactions between approximately 2.7 million SNPs across the genome with self-reported calcium intake (from dietary or supplemental sources) in 9,006 colorectal cancer cases and 9,503 controls of European ancestry. To test for multiplicative interactions, we used multivariable logistic regression and defined statistical significance using the conventional genome-wide α = 5E−08. Results: After accounting for multiple comparisons, there were no statistically significant SNP interactions with total, dietary, or supplemental calcium intake. Conclusions: We found no evidence of SNP interactions with calcium intake for colorectal cancer risk in a large population of 18,509 individuals. Impact: These results suggest that in genome-wide analysis common genetic variants do not strongly modify the association between calcium intake and colorectal cancer in European populations. Cancer Epidemiol Biomarkers Prev; 23(12); 2971–6. ©2014 AACR.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...