GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (3)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 24_Supplement ( 2016-12-15), p. B66-B66
    Abstract: Background and Aims: Pancreatic ductal adenocarcinoma (PDAC) is well characterized by dense fibrotic stroma with abundant cancer-associated fibroblasts (CAFs). As CAFs are activated during tumorigenesis and acquire tumor-promoting properties, activated CAFs have been implicated in PDAC progression; however, the precise mechanisms of their activation remain largely unknown. The bromodomain and extraterminal (BET) domain proteins are epigenetic reader proteins that recognize acetylated amino acid residues on histone tails and facilitate gene transcription. Recent studies have demonstrated therapeutic efficacy of BET inhibitors on various cancers including PDAC, mainly through suppression of c-myc transcription; however, how BET inhibitors suppress PDAC growth and their effects on CAFs remains largely unknown. Using patient-derived tumor xenografts (PDX) and primary CAFs, we investigated the therapeutic efficacy and dissected the underlying mechanisms of a BET inhibitor, JQ1, on human PDAC and CAFs. Methods: We established PDX lines and primary CAFs from surgically resected human PDAC specimen. For in vivo analyses, mice bearing subcutaneous tumor were treated with vehicle or JQ1. For in vitro analyses, patient-derived PDAC cells and CAFs were treated with vehicle or JQ1 and analyzed separately. To explore the pro-tumorigenic role of secretion from CAFs, PDAC cells were cultured with conditioned medium (CM) that was collected from DMSO- or JQ1- treated CAFs. Chromatin immunoprecipitation (ChIP) assay was performed to assess the binding of transcription factors and histone modifications which are associated with altered gene expression in CAFs by JQ1 treatment. Results: In vivo experiments revealed that volumes and weights of subcutaneous PDX tumors were significantly smaller in JQ1-treated mice than vehicle-treated mice. Unexpectedly, however, JQ1 exerted only minimal effects to the proliferation of PDAC cells that were isolated from PDX tumors and cultured in vitro, suggesting the involvement of cell-extrinsic mechanisms in the JQ1-mediated suppression of tumor growth in vivo. Of note, histopathological analysis of PDX tumors revealed that JQ1 treatment dramatically ameliorated desmoplastic change, with reduction in extracellular matrix (ECM) deposition and α-SMA expressing CAFs. As α-SMA expression and ECM production is a hallmark of activated CAFs, we hypothesized that JQ1 might inactivate CAFs, thereby reducing their tumor-promoting properties. To test this hypothesis, qPCR was performed to analyze gene expression in primary CAFs cultured in vitro and also in stromal cells in PDX tumors in vivo. As expectedly, JQ1 suppressed the expression of genes implicated in the properties of activated CAF, including ECM, cytokines and growth factors both in vitro and in vivo. Furthermore, when PDAC cells were cultured with CM from DMSO–treated CAFs, proliferation of PDAC cells were promoted along with activation of MAPK, AKT, and STAT3 pathways, which was abrogated when cultured with CM from JQ1-treated CAFs. Consistently, immunoblotting and immunohistochemistry of PDX tumors demonstrated that JQ1 reduced phosphorylation of ERK, AKT, and STAT3 in PDAC cells in vivo. Mechanistically, we found that JQ1 suppressed hedgehog and TGF-β/SMAD3 pathways, both of which play central roles in CAF activation, through disruption of BRD4 recruitment to the promoter regions of their target genes. Conclusions: BET proteins are critical regulators of CAF-activation in PDAC. Inactivation of CAFs by BET inhibition offers a novel therapeutic approach for PDAC. Citation Format: Keisuke Yamamoto, Keisuke Tateishi, Yotaro Kudo, Mayumi Hoshikawa, Mariko Tanaka, Takuma Nakatsuka, Hiroaki Fujiwara, Koji Miyabayashi, Ryota Takahashi, Yasuo Tanaka, Hideaki Ijichi, Yousuke Nakai, Hiroyuki Isayama, Yasuyuki Morishita, Taku Aoki, Yoshihiro Sakamoto, Kiyoshi Hasegawa, Norihiro Kokudo, Masashi Fukayama, Kazuhiko Koike.{Authors}. BET inhibition remodels tumor stroma and suppresses progression of human pancreatic cancer. [abstract]. In: Proceedings of the AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; 2016 May 12-15; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2016;76(24 Suppl):Abstract nr B66.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 22_Supplement ( 2021-11-15), p. PO-067-PO-067
    Abstract: Chromatin architecture governs cell lineages by regulating the specific gene expression; however, its role in the diversity of cancer development remains unknown. Among pancreatic cancers, pancreatic ductal adenocarcinoma (PDAC) and invasive carcinoma with an associated intraductal papillary mucinous neoplasms (invasive IPMNs) arise from two distinct precursors, and their fundamental differences remain obscure. Here, we hypothesized that chromatin profiles may clarify their intrinsic molecular features. We originally established 28 human organoids from distinct subtypes of pancreatic tumors, including IPMN, invasive IPMN, and PDAC as well as from normal ductal cells and performed exome-seq, RNA-seq, ATAC-seq, ChIP-seq, Hi-C, and phenotypic analyses with shRNA or CRISPR interference. Established organoids successfully reproduced the histology of primary tumors. IPMN and invasive IPMN organoids specifically harbored GNAS, RNF43, and KLF4 mutations and showed the distinct lineage related expression profiles compared to PDAC. In addition, chromatin accessibility profiles well stratified the respective tumor groups. Notably, this analysis supported the histological features of tumor subtypes; gastric IPMN gained the stomach-specific accessible regions and the accessible pattern of invasive IPMN linked to diverse gastrointestinal tissues. In contrast, PDAC was characterized by the significant loss of chromatin accessibility seen in normal pancreatic ductal cells. Footprint analysis of transcription factors (TFs) identified specific TFs that are enriched in each tumor subtype. Of note we found the footprint of HNF1B to be active in IPMN lineages but not in PDAC. To address its biological significance, we analyzed the effects of HNF1B by knockdown (KD) experiments and revealed that HNF1B is biologically indispensable for IPMN lineages. We further identified MNX1 as an upstream regulator of HNF1B expression, another TF expressed in multipotent pancreatic progenitor cells. ChIP experiment revealed the enriched binding of MNX1 on the promoter elements of HNF1B in invasive IPMN. Importantly, KD or CRISPR interference of MNX1 impaired the survival of the organoids from invasive IPMN. Moreover, the correlated and high expression patterns of MNX1 and HNF1B in IPMN lineages were validated in a set of human tissues. To identify the common downstream genes of MNX1 and HNF1B, we analyzed RNA-seq and ATAC-seq after KD of the two genes. We found that MNX1-HNF1B axis governed a set of genes including MYC, SOX9, and OLFM4, which are known to regulate stem cell properties in gastrointestinal epithelium. Lastly, to get a broader view of chromatin architecture in these tumors, we performed Hi-C. We found that HNF1B target genes to be three-dimensionally condensed in the genome of invasive IPMN but not in that of PDAC, supporting the functional importance of those genes in invasive IPMN. Collectively, our organoid analyses unraveled the different lineage related chromatin structures correlating to the specific biological behaviors in pancreatic tumor subtypes. Citation Format: Hiroyuki Kato, Keisuke Tateishi, Keisuke Yamamoto, Dousuke Iwadate, Hiroaki Fujiwara, Takuma Nakatsuka, Koji Miyabayashi, Yotaro Kudo, Ijichi Hideaki, Kazuhiko Koike, Mitsuhiro Fujishiro. A multi-omics study in patient-derived organoids reveals MNX1-HNF1B axis to be indispensable for intraductal mucinous papillary neoplasm lineages [abstract]. In: Proceedings of the AACR Virtual Special Conference on Pancreatic Cancer; 2021 Sep 29-30. Philadelphia (PA): AACR; Cancer Res 2021;81(22 Suppl):Abstract nr PO-067.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 2_Supplement ( 2016-01-15), p. A40-A40
    Abstract: The role of genetic mutations in the pathogenesis of pancreatic ductal adenocarcinoma (PDAC) is well established. However, it is still unclear if epigenetic aberrations contribute to PDAC progression. We previously reported a novel role for the H3K27 demethylase KDM6B/JMJD3 in regulating PDAC progression (Carcinogenesis 2014;35(11):2404-14). KDM6B was downregulated in high grade PDACs and knockdown (KD) of KDM6B in PDAC cells increased the tumorigenicity and enhanced the aggressive phenotypes of these cells in vivo. Furthermore, CCAAT enhancer binding protein alpha gene (CEBPA) was identified as a direct target of KDM6B, and reduced KDM6B- C/EBPα axis was resulted in increased aggressiveness in PDAC cells. To dissect further the pathological effects caused by loss of KDM6B- C/EBPα function in PDAC cells, we tried to identify a surrogate molecular marker of the cells lacking of KDM6B- function. For the purpose, we used a cDNA microarray to compare the expression profiles of KDM6B- KD and control BxPC3 PDAC cells. 906 genes were upregulated and 639 downregulated in KDM6B- KD BxPC3 cells compared to the control cells. We focused on 58 genes encoding cell-surface molecules that were upregulated in KDM6B- KD BxPC3 cells and validated the expression of 9 surface marker candidates, including 3 that have already been reported to be expressed on PDAC tumor-initiating cells, namely, CD24, CD44, and CD133. Only CD47 was significantly upregulated in the KDM6B- KD BxPC3 cells as confirmed by both quantitative RT-PCR and flow cytometric analysis. CD47 was also upregulated in other PDAC cell lines following KDM6B knockdown. It has recently been reported that CD47 is upregulated in various malignancies and that an increase in CD47 expression is correlated with a poor prognosis. In line with the previous reports, CD47high cells formed about 4-fold more spheres than non-CD47high cells. The close relationship between CD47 expression and the sphere-forming ability was supported by the finding that CD47low cells formed even fewer spheres. To confirm these results in vivo, the sorted CD47high and non-CD47high cells were subcutaneously xenotransplanted into nude mice. All CD47high cells formed tumors more efficiently than the unfractionated KDM6B- KD cells, while the tumor-forming rate of non-CD47high cells was comparable to that of the Ctrl cells. In addition, when the cells were injected into the spleens of nude mice, CD47high cells demonstrated higher liver metastatic potential than the non-CD47high population. These data suggested that the increased tumor-initiating potential of KDM6B- KD cells was attributable to this induced CD47high population. Consistently, the expression of KDM6B and C/EBPα inversely correlated with CD47 expression and tumor grade in human PDAC tumors. Collectively, our data provides a link between epigenetic change and PDAC progression, thus offering a novel strategy to target PDAC aggressiveness by intervening in the dynamics of epigenetic process. Citation Format: Keisuke Yamamoto, Keisuke Tateishi, Yotaro Kudo, Koji Miyabayashi, Ryota Takahashi, Takuma Nakatsuka, Hiroaki Fujiwara, Yousuke Nakai, Yasuo Tanaka, Hideaki Ijichi, Hiroyuki Isayama, Kazuhiko Koike. Emergence of CD47- high expression cells confers enhanced tumorigenicity upon KDM6B suppression in pancreatic cancer. [abstract]. In: Proceedings of the AACR Special Conference on Chromatin and Epigenetics in Cancer; Sep 24-27, 2015; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2016;76(2 Suppl):Abstract nr A40.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...