GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (36)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 1 ( 2018-01-01), p. 256-264
    Abstract: Median survival for glioblastoma (GBM) remains & lt;15 months. Human cytomegalovirus (CMV) antigens have been identified in GBM but not normal brain, providing an unparalleled opportunity to subvert CMV antigens as tumor-specific immunotherapy targets. A recent trial in recurrent GBM patients demonstrated the potential clinical benefit of adoptive T-cell therapy (ATCT) of CMV phosphoprotein 65 (pp65)–specific T cells. However, ex vivo analyses from this study found no change in the capacity of CMV pp65-specific T cells to gain multiple effector functions or polyfunctionality, which has been associated with superior antitumor efficacy. Previous studies have shown that dendritic cells (DC) could further enhance tumor-specific CD8+ T-cell polyfunctionality in vivo when administered as a vaccine. Therefore, we hypothesized that vaccination with CMV pp65 RNA-loaded DCs would enhance the frequency of polyfunctional CMV pp65-specific CD8+ T cells after ATCT. Here, we report prospective results of a pilot trial in which 22 patients with newly diagnosed GBM were initially enrolled, of which 17 patients were randomized to receive CMV pp65-specific T cells with CMV-DC vaccination (CMV-ATCT-DC) or saline (CMV-ATCT-saline). Patients who received CMV-ATCT-DC vaccination experienced a significant increase in the overall frequencies of IFNγ+, TNFα+, and CCL3+ polyfunctional, CMV-specific CD8+ T cells. These increases in polyfunctional CMV-specific CD8+ T cells correlated (R = 0.7371, P = 0.0369) with overall survival, although we cannot conclude this was causally related. Our data implicate polyfunctional T-cell responses as a potential biomarker for effective antitumor immunotherapy and support a formal assessment of this combination approach in a larger randomized study. Significance: A randomized pilot trial in patients with GBM implicates polyfunctional T-cell responses as a biomarker for effective antitumor immunotherapy. Cancer Res; 78(1); 256–64. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 24, No. 15 ( 2018-08-01), p. 3611-3631
    Abstract: Purpose: Conventional therapy for malignant glioma fails to specifically target tumor cells. In contrast, substantial evidence indicates that if appropriately redirected, T cells can precisely eradicate tumors. Here we report the rational development of a fully human bispecific antibody (hEGFRvIII-CD3 bi-scFv) that redirects human T cells to lyse malignant glioma expressing a tumor-specific mutation of the EGFR (EGFRvIII). Experimental Design: We generated a panel of bispecific single-chain variable fragments and optimized design through successive rounds of screening and refinement. We tested the ability of our lead construct to redirect naïve T cells and induce target cell–specific lysis. To test for efficacy, we evaluated tumor growth and survival in xenogeneic and syngeneic models of glioma. Tumor penetrance following intravenous drug administration was assessed in highly invasive, orthotopic glioma models. Results: A highly expressed bispecific antibody with specificity to CD3 and EGFRvIII was generated (hEGFRvIII-CD3 bi-scFv). Antibody-induced T-cell activation, secretion of proinflammatory cytokines, and proliferation was robust and occurred exclusively in the presence of target antigen. hEGFRvIII-CD3 bi-scFv was potent and target-specific, mediating significant lysis of multiple malignant glioma cell lines and patient-derived malignant glioma samples that heterogeneously express EGFRvIII. In both subcutaneous and orthotopic models, well-engrafted, patient-derived malignant glioma was effectively treated despite heterogeneity of EGFRvIII expression; intravenous hEGFRvIII-CD3 bi-scFv administration caused significant regression of tumor burden (P & lt; 0.0001) and significantly extended survival (P & lt; 0.0001). Similar efficacy was obtained in highly infiltrative, syngeneic glioma models, and intravenously administered hEGFRvIII-CD3 bi-scFv localized to these orthotopic tumors. Conclusions: We have developed a clinically translatable bispecific antibody that redirects human T cells to safely and effectively treat malignant glioma. On the basis of these results, we have developed a clinical study of hEGFRvIII-CD3 bi-scFv for patients with EGFRvIII-positive malignant glioma. Clin Cancer Res; 24(15); 3611–31. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 26, No. 5 ( 2020-03-01), p. 1141-1151
    Abstract: Although pituitary adenoma is classified as benign, Cushing disease is associated with significant morbidity due to the numerous sequelae of elevated cortisol levels. Successful therapy for Cushing disease remains elusive due to high rates of treatment-refractory recurrence. The frequent emergence of lymphocytic hypophysitis following checkpoint blockade for other cancers, as well as the expression of PD-L1 on pituitary adenomas, suggest a role for immunotherapy. Experimental Design: This study confirms PD-L1 expression on functioning pituitary adenomas and is the first to evaluate the efficacy of checkpoint blockade (anti–PD-L1) therapy in a preclinical model of Cushing disease. Results: Herein, treatment with anti–PD-L1 was successful in reducing adrenocorticotropic hormone plasma levels, decreasing tumor growth, and increasing survival in our model. Furthermore, tumor-infiltrating T cells demonstrated a pattern of checkpoint expression similar to other checkpoint blockade–susceptible tumors. Conclusions: This suggests that immunotherapy, particularly blockade of the PD1/PD-L1 axis, may be a novel therapeutic option for refractory Cushing disease. Clinical investigation is encouraged.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 8_Supplement ( 2010-04-15), p. 3318-3318
    Abstract: Although current therapeutic strategies for malignant gliomas are non-specifically directed against the tumor bulk, increasing evidence suggests that a single glioma contains a range of phenotypically disparate cell populations with differential capacity for tumor maintenance and initiation. Recent work in brain tumors suggests the existence of cellular sub-populations (known as cancer stem cells, or CSCs) that possess stem cell-like behaviors and a potent capacity for tumor initiation in transplantation assays relative to non-CSCs. Specifically targeting the highly tumorigenic CSCs has the potential to improve the prognosis of malignant glioma patients, but many molecularly-directed anti-CSC agents may also compromise the survival of normal neural stem cells due to molecular similarities between CSCs and normal stem cells. Here we demonstrate that malignant glioma CSCs express high levels of a particular protein relative to non-CSCs. Glioma CSC growth and tumorigenic capacity were abrogated by multiple strategies interfering with the expression and activity of this protein, including RNA interference, pharmacological inhibition, and heterologous expression of a prokaryotic enzyme that specifically consumes the enzymatic product of this critical protein. Importantly, tumor growth was inhibited by systemic treatment of xenograft-bearing mice with a well-studied small molecule inhibitor of this protein that has already demonstrated low toxicity in clinical trials for other diseases. Though the activity of this protein appears critical for the maintenance of highly tumorigenic glioma CSCs, our examination of both normal human neural progenitor cells and neural stem cells derived from genetically disrupted mice indicate no substantial role for this protein in normal neural stem cells. Our findings identify a novel glioma therapeutic target with a negligible role in normal neural stem cells, suggesting clinical utility for selective inhibitors of this CSC-specific molecular target. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 3318.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 8 ( 2017-04-15), p. 1898-1909
    Abstract: Purpose: Patients with glioblastoma have less than 15-month median survival despite surgical resection, high-dose radiation, and chemotherapy with temozolomide. We previously demonstrated that targeting cytomegalovirus pp65 using dendritic cells (DC) can extend survival and, in a separate study, that dose-intensified temozolomide (DI-TMZ) and adjuvant granulocyte macrophage colony-stimulating factor (GM-CSF) potentiate tumor-specific immune responses in patients with glioblastoma. Here, we evaluated pp65-specific cellular responses following DI-TMZ with pp65-DCs and determined the effects on long-term progression-free survival (PFS) and overall survival (OS). Experimental Design: Following standard-of-care, 11 patients with newly diagnosed glioblastoma received DI-TMZ (100 mg/m2/d × 21 days per cycle) with at least three vaccines of pp65 lysosome–associated membrane glycoprotein mRNA-pulsed DCs admixed with GM-CSF on day 23 ± 1 of each cycle. Thereafter, monthly DI-TMZ cycles and pp65-DCs were continued if patients had not progressed. Results: Following DI-TMZ cycle 1 and three doses of pp65-DCs, pp65 cellular responses significantly increased. After DI-TMZ, both the proportion and proliferation of regulatory T cells (Tregs) increased and remained elevated with serial DI-TMZ cycles. Median PFS and OS were 25.3 months [95% confidence interval (CI), 11.0–∞] and 41.1 months (95% CI, 21.6–∞), exceeding survival using recursive partitioning analysis and matched historical controls. Four patients remained progression-free at 59 to 64 months from diagnosis. No known prognostic factors [age, Karnofsky performance status (KPS), IDH-1/2 mutation, and MGMT promoter methylation] predicted more favorable outcomes for the patients in this cohort. Conclusions: Despite increased Treg proportions following DI-TMZ, patients receiving pp65-DCs showed long-term PFS and OS, confirming prior studies targeting cytomegalovirus in glioblastoma. Clin Cancer Res; 23(8); 1898–909. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 15, No. 3 ( 2009-02-01), p. 1064-1068
    Abstract: Purpose: This phase II trial was designed to define the efficacy of Gliadel wafers in combination with an infusion of O6-benzylguanine (O6-BG) that suppresses tumor O6-alkylguanine-DNA alkyltransferase (AGT) levels in patients with recurrent glioblastoma multiforme for 5 days and to evaluate the safety of this combination therapy. Experimental Design: This was a phase II, open-label, single center trial. On gross total resection of the tumor, up to eight Gliadel wafers were implanted. Bolus infusion of O6-BG was administered at 120 mg/m2 over 1 hour on days 1, 3, and 5, along with a continuous infusion at 30 mg/m2/d. The primary end points were 6-month overall survival (OS) and safety, and the secondary end points were 1-year, 2-year, and median OS. Results: Fifty-two patients were accrued. The 6-month OS was 82% [95% confidence interval (95% CI), 72-93%]. The 1- and 2-year OS rates were 47% (95% CI, 35-63%) and 10% (95% CI, 3-32%), respectively. The median OS was 50.3 weeks (95% CI, 36.1-69.4 weeks). Treatment-related toxicity with this drug combination included grade 3 hydrocephalus (9.6%), grade 3 cerebrospinal fluid (CSF) leak (19.2%), and grade 3 CSF/brain infection (13.4%). Conclusion: The efficacy of implanted Gliadel wafers may be improved with the addition of O6-BG. Although systemically administered O6-BG can be coadministered with Gliadel wafers safely, it may increase the risk of hydrocephalus, CSF leak, and CSF/brain infection. Future trials are required to verify that inhibition of tumor AGT levels by O6-BG results in increased efficacy of Gliadel wafers without added toxicity.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2009
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 64, No. 15 ( 2004-08-01), p. 5048-5050
    Abstract: The phosphatidylinositol 3′-kinase pathway is activated in multiple advanced cancers, including glioblastomas, through inactivation of the PTEN tumor suppressor gene. Recently, mutations in PIK3CA, a member of the family of phosphatidylinositol 3′-kinase catalytic subunits, were identified in a significant fraction (25–30%) of colorectal cancers, gastric cancers, and glioblastomas and in a smaller fraction of breast and lung cancers. These mutations were found to cluster into two major “hot spots” located in the helical and catalytic domains. To determine whether PIK3CA is genetically altered in brain tumors, we performed a large-scale mutational analysis of the helical and catalytic domains. A total of 13 mutations of PIK3CA within these specific domains were identified in anaplastic oligodendrogliomas, anaplastic astrocytomas, glioblastoma multiforme, and medulloblastomas, whereas no mutations were identified in ependymomas or low-grade astrocytomas. These observations implicate PIK3CA as an oncogene in a wider spectrum of adult and pediatric brain tumors and suggest that PIK3CA may be a useful diagnostic marker or a therapeutic target in these cancers.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2004
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 69, No. 23 ( 2009-12-01), p. 9105-9111
    Abstract: Glioblastoma multiforme is the most prevalent type of adult brain tumor and one of the deadliest tumors known to mankind. The genetic understanding of glioblastoma multiforme is, however, limited, and the molecular mechanisms that facilitate glioblastoma multiforme cell survival and growth within the tumor microenvironment are largely unknown. We applied digital karyotyping and single nucleotide polymorphism arrays to screen for copy-number changes in glioblastoma multiforme samples and found that the most frequently amplified region is at chromosome 7p11.2. The high resolution of digital karyotyping and single nucleotide polymorphism arrays permits the precise delineation of amplicon boundaries and has enabled identification of the minimal region of amplification at chromosome 7p11.2, which contains two genes, EGFR and SEC61γ. SEC61γ encodes a subunit of a heterotrimeric protein channel located in the endoplasmic reticulum (ER). In addition to its high frequency of gene amplification in glioblastoma multiforme, SEC61γ is also remarkably overexpressed in 77% of glioblastoma multiforme but not in lower-grade gliomas. The small interfering RNA–mediated knockdown of SEC61γ expression in tumor cells led to growth suppression and apoptosis. Furthermore, we showed that pharmacologic ER stress agents induce SEC61γ expression in glioblastoma multiforme cells. Together, these results indicate that aberrant expression of SEC61γ serves significant roles in glioblastoma multiforme cell survival likely via a mechanism that is involved in the cytoprotective ER stress–adaptive response to the tumor microenvironment. [Cancer Res 2009;69(23):9105–11]
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2009
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 12, No. 3 ( 2006-02-01), p. 860-868
    Abstract: Purpose: To determine the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT) of gefitinib, a receptor tyrosine kinase inhibitor of the epidermal growth factor receptor, plus sirolimus, an inhibitor of the mammalian target of rapamycin, among patients with recurrent malignant glioma. Patients and Methods: Gefitinib and sirolimus were administered on a continuous daily dosing schedule at dose levels that were escalated in successive cohorts of malignant glioma patients at any recurrence who were stratified based on concurrent use of CYP3A-inducing anticonvulsants [enzyme-inducing antiepileptic drugs, (EIAED)]. Pharmacokinetic and archival tumor biomarker data were also assessed. Results: Thirty-four patients with progressive disease after prior radiation therapy and chemotherapy were enrolled, including 29 (85%) with glioblastoma multiforme and 5 (15%) with anaplastic glioma. The MTD was 500 mg of gefitinib plus 5 mg of sirolimus for patients not on EIAEDs and 1,000 mg of gefitinib plus 10 mg of sirolimus for patients on EIAEDs. DLTs included mucositis, diarrhea, rash, thrombocytopenia, and hypertriglyceridemia. Gefitinib exposure was not affected by sirolimus administration but was significantly lowered by concurrent EIAED use. Two patients (6%) achieved a partial radiographic response, and 13 patients (38%) achieved stable disease. Conclusion: We show that gefitinib plus sirolimus can be safely coadministered on a continuous, daily dosing schedule, and established the recommended dose level of these agents in combination for future phase 2 clinical trials.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2006
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 8 ( 2016-04-15), p. 2465-2477
    Abstract: Many cancers feature cellular hierarchies that are driven by tumor-initiating cancer stem cells (CSC) and rely on complex interactions with the tumor microenvironment. Standard cell culture conditions fail to recapitulate the original tumor architecture or microenvironmental gradients and are not designed to retain the cellular heterogeneity of parental tumors. Here, we describe a three-dimensional culture system that supports the long-term growth and expansion of tumor organoids derived directly from glioblastoma specimens, including patient-derived primary cultures, xenografts, genetically engineered glioma models, or patient samples. Organoids derived from multiple regions of patient tumors retain selective tumorigenic potential. Furthermore, organoids could be established directly from brain metastases not typically amenable to in vitro culture. Once formed, tumor organoids grew for months and displayed regional heterogeneity with a rapidly dividing outer region of SOX2+, OLIG2+, and TLX+ cells surrounding a hypoxic core of primarily non-stem senescent cells and diffuse, quiescent CSCs. Notably, non-stem cells within organoids were sensitive to radiotherapy, whereas adjacent CSCs were radioresistant. Orthotopic transplantation of patient-derived organoids resulted in tumors displaying histologic features, including single-cell invasiveness, that were more representative of the parental tumor compared with those formed from patient-derived sphere cultures. In conclusion, we present a new ex vivo model in which phenotypically diverse stem and non-stem glioblastoma cell populations can be simultaneously cultured to explore new facets of microenvironmental influences and CSC biology. Cancer Res; 76(8); 2465–77. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...