GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (15)
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2015
    In:  Cancer Prevention Research Vol. 8, No. 9 ( 2015-09-01), p. 857-863
    In: Cancer Prevention Research, American Association for Cancer Research (AACR), Vol. 8, No. 9 ( 2015-09-01), p. 857-863
    Abstract: Screening for oral leukoplakia, an oral cavity cancer (OCC) precursor, could lead to earlier detection of OCC. However, the progression rate from leukoplakia to OCC and the benefits of leukoplakia screening for improving OCC outcomes are currently unclear. We conducted a case–cohort study of U.S. adults ages ≥65 years in the Surveillance, Epidemiology, and End Results (SEER)-Medicare linkage. We identified leukoplakia diagnoses through Medicare claims, and OCC diagnoses through SEER cancer registries. Weighted Cox regression was used to estimate leukoplakia associations with OCC incidence, and the absolute OCC risk following leukoplakia diagnosis was calculated. Among OCC cases, we compared OCC stage and OCC survival between cases with a prior leukoplakia diagnosis versus those without prior leukoplakia. Among 470,266 individuals in the SEER-Medicare subcohort, 1,526 (0.3%) had a leukoplakia diagnosis. Among people with leukoplakia, the cumulative OCC incidence was 0.7% at 3 months and 2.5% at 5 years. OCC risk was most increased & lt;3 months after leukoplakia diagnosis (HR, 115), likely representing the diagnosis of prevalent cancers. Nonetheless, risk remained substantially increased in subsequent follow-up [HR ≥ 3 months, 24; 95% confidence interval (CI), 22–27; HR ≥ 12 months, 22, 95% CI, 20–25]. Among OCC cases (N = 8,927), those with prior leukoplakia were less likely to be diagnosed at regional/distant stage (OR, 0.36; 95% CI, 0.30–0.43), and had lower mortality (HR, 0.74; 95% CI, 0.65–0.84) when compared with OCC cases without a prior leukoplakia. Individuals with leukoplakia have substantially elevated risk of OCC. Lower stage and b etter survival after OCC diagnosis suggest that leukoplakia identification can lead to earlier OCC detection and reduced mortality. Cancer Prev Res; 8(9); 857–63. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 1940-6207 , 1940-6215
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2422346-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 21 ( 2021-11-01), p. 5993-6000
    Abstract: Programmed cell death receptor-1 (PD-1) inhibitors are frontline therapy in advanced melanoma. Severe immune-related adverse effects (irAEs) often require immunosuppressive treatment with glucocorticoids (GCCs), but GCC use and its correlation with patient survival outcomes during anti–PD-1 monotherapy remains unclear. Experimental Design: In this multicenter retrospective analysis, patients treated with anti–PD-1 monotherapy between 2009 and 2019 and detailed GCC use, data were identified from five independent cohorts, with median follow-up time of 206 weeks. IrAEs were tracked from the initiation of anti–PD-1 until disease progression, initiation of a new therapy, or last follow-up. Correlations between irAEs, GCC use, and survival outcomes were analyzed. Results: Of the entire cohort of 947 patients, 509 (54%) developed irAEs. In the MGH cohort [irAE(+) n = 90], early-onset irAE (within 8 weeks of anti–PD-1 initiation) with high-dose GCC use (≥60-mg prednisone equivalent once a day) was independently associated with poorer post-irAE PFS/OS (progression-free survival/overall survival) [post-irAE PFS: HR, 5.37; 95% confidence interval (CI), 2.10–13.70; P & lt; 0.001; post-irAE OS: HR, 5.95; 95% CI, 2.20–16.09; P & lt; 0.001] compared with irAEs without early high-dose GCC use. These findings were validated in the combined validation cohort [irAE(+) n = 419, post-irAE PFS: HR, 1.69; 95% CI, 1.04–2.76; P = 0.04; post-irAE OS: HR, 1.97; 95% CI, 1.15–3.39; P = 0.01] . Similar findings were also observed in the 26-week landmark analysis for post–irAE-PFS but not for post–irAE-OS. A sensitivity analysis using accumulated GCC exposure as the measurement achieved similar results. Conclusions: Early high-dose GCC use was associated with poorer PFS and OS after irAE onset. Judicious use of GCC early during anti–PD-1 monotherapy should be considered. Further prospective randomized control clinical trials designed to explore alternative irAE management options are warranted.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 62-62
    Abstract: Most targeted cancer therapies fail to achieve complete tumor regressions or attain durable remissions. To understand why these treatments fail to induce robust cytotoxic responses despite appropriately targeting oncogenic drivers, here we systematically interrogated the dependence of cancer cells on the BCL-2 family of apoptotic proteins after drug treatment. We observe that multiple targeted therapies, including BRAF or EGFR inhibitors, rapidly deplete the pro-apoptotic factor NOXA, thus creating a dependence on the anti-apoptotic protein MCL-1. This adaptation requires a pathway leading to the destabilization of the NOXA mRNA transcript. We find that interruption of this mechanism of anti-apoptotic adaptive resistance dramatically increases cytotoxic responses in cell lines and a murine melanoma model. Durable control of disease in vivo can be achieved with combinations of targeted therapy with an MCL-1 inhibitor. However, consistent with an adaptive resistance mechanism we have identified, the timing of drug treatment strongly influences the efficacy of the combination therapy. Collectively, our results identify NOXA mRNA destabilization/MCL-1 adaptation as a non-genomic mechanism that limits apoptotic responses. Our data indicate that optimal sequencing of MCL-1 inhibitors with targeted therapies could overcome widespread and clinically important therapeutic resistance, and achieve prolonged tumor responses in solid tumors. Citation Format: Joan Montero, Cecile Gstalder, Daniel J. Kim, Dorota Sadowicz, Wayne Miles, Michael Manos, Justin R. Cidado, J. Paul Secrist, Adriana E. Tron, Keith Flaherty, F. Stephen Hodi, Charles H. Yoon, Anthony Letai, David E. Fisher, Rizwan Haq. Destabilization of NOXA mRNA as a common resistance mechanism to targeted therapies [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 62.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 8, No. 3_Supplement ( 2020-03-01), p. A83-A83
    Abstract: T-cell dysfunction in the tumor microenvironment (TME) is a hallmark of many cancers. Reinvigoration of T-cell function by PD-1 checkpoint blockade can result in striking clinical responses, but is only effective in a minority of patients. The mechanisms by which anti-PD-1 therapy acts on exhausted T cells are not fully understood. Here we show that anti-PD-1 therapy acts on a specific subpopulation of CD8+ tumor-infiltrating lymphocytes (TILs) in melanoma mouse models, which can also be found in patients with melanoma. Exhausted CD8+ TILs contain a subpopulation of “progenitor exhausted” T cells with critical functional attributes that are not shared by the majority “terminally exhausted” TILs: they retain more polyfunctionality, persist following transfer into tumor-bearing mice, and differentiate to repopulate terminally exhausted TILs in the TME. As a result, progenitor exhausted CD8+ TILs are better able to control tumor growth than terminally exhausted cells. Progenitor exhausted, but not terminally exhausted, CD8+ TILs can respond to anti-PD-1 therapy. Melanoma patients with a higher percentage of progenitor exhausted cells have a longer duration of response to checkpoint blockade therapy. Therefore, approaches to expand progenitor exhausted CD8+ T cells in the tumor microenvironment may be an important component of improving checkpoint blockade response. Citation Format: Brian C. Miller, Debattama R. Sen, Rose Al Abosy, Kevin Bi, Yamini Virkud, Martin W. LaFleur, Kathleen B. Yates, Ana Lako, Kristen Felt, Girish S. Naik, Michael Manos, Evisa Gjini, Jeffrey J. Ishizuka, F. Stephen Hodi, Scott J. Rodig, Arlene H. Sharpe, W. Nicholas Haining. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2019 Nov 17-20; Boston, MA. Philadelphia (PA): AACR; Cancer Immunol Res 2020;8(3 Suppl):Abstract nr A83.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2732517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 65-65
    Abstract: Immune checkpoint blockade (ICB) therapy revolutionized cancer treatment, but many patients with impaired MHC-I expression remain refractory. Here, we combined FACS-based genome-wide CRISPR screens with a data-mining approach to identify drugs that can upregulate MHC-I without inducing PD-L1. CRISPR screening identified TRAF3, a critical suppressor of the NF-κB pathway, as a negative regulator of MHC-I but not PD-L1. The Traf3-knockout (Traf3-KO) gene expression signature is associated with better survival in ICB-naive cancer patients and better ICB response. We then screened for drugs with similar transcriptional effects as this signature and identified SMAC mimetics. We experimentally validated that the SMAC mimetic birinapant upregulates MHC-I, sensitizes cancer cells to T-cell-dependent killing, and synergizes with ICB. Our findings provide preclinical rationale for treating tumors expressing low MHC-I expression with SMAC mimetics to enhance sensitivity to immunotherapy. The approach used in this study can be generalized to identify other drugs that enhance immunotherapy efficacy. Citation Format: Shengqing Gu, Wubing Zhang, Xiaoqing Wang, Peng Jiang, Nicole Traugh, Ziyi Li, Clifford Meyer, Blair Stewig, Yingtian Xie, Xia Bu, Michael Manos, Alba Font-Tello, Evisa Gjini, Ana Lako, Klothilda Lim, Jake Conway, Alok Tewari, Zexian Zeng, Avinash Das Sahu, Collin Tokheim, Jason L. Weirather, Jingxin Fu, Yi Zhang, Benjamin Kroger, Jin Hua Liang, Paloma Cejas, Gordon J. Freeman, Scott J. Rodig, Henry Long, Benjamin E. Gewurz, F. Stephen Hodi, Myles Brown, X. Shirley Liu. Therapeutically increasing MHC-I expression potentiates immune checkpoint blockade [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 65.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 5706-5706
    Abstract: Tumor-infiltrating lymphocyte (TIL) density has been identified as a prognostic and predictive biomarker in select tumors treated with defined therapies. These observations suggest that TILs may be general markers of patient outcomes, but evidence in support of this hypothesis has been limited by small cohorts. We validated ImmunoPROFILE, a multiplexed immunofluorescence (MIF)-based assay coupled with machine-learning-based image analysis, to identify and quantify tumor cells (cytokeratin, PAX5, PAX8, SOX10), T cells (CD8), T-regulatory cells (FOXP3), exhausted cells (PD-1) and immunosuppressive tumor and immune cells (PD-L1). We applied the MIF panel to specimens from patients collected prospectively over three years and analyzed 2,023 cases across 27 tumor types. The association between biomarkers and overall survival (OS) was investigated using Cox models controlling for patient risk factors such as cancer type, metastatic vs. primary disease, age, and gender. Multivariable biomarker selection was based on likelihood ratios. The assay was highly robust (success rate 97%), reproducible (inter-scanning and intra-staining density controls within 1 SD, inter-staining PD-L1 scores ≤11% CV), and operator-independent (R2 & gt;0.7 to & gt;0.9 for each biomarker and 95% concordance in PD-L1 score-based interpretation between technicians). From whole slide images, a total of 11,932 individual regions of interest were analyzed across the cohort, resulting in & gt;50 million spatially-resolved single cells which were summarized into cell population densities and PD-L1 scores. High densities of CD8+ ( & gt;64/mm2, p & lt;0.0001), PD-1+ ( & gt;50/mm2, p & lt;0.0001), and FOXP3+ ( & gt;30/mm2, p & lt;0.0001) T cells were associated with longer overall survival (OS) irrespective of therapy and across all cancer types. PD-L1 metrics were not associated with OS (p=0.43). Compared to patients with low densities of CD8+ and PD-1+ cells, high densities of at least one of these cell types had better OS (Both high, HR: 0.49, 95% CI: 0.41 - 0.59; CD8+ high, HR: 0.63, (0.48 - 0.82); PD-1+ high, HR: 0.71, (0.54 - 0.93)). The results were consistent in the subset of patients (N=1572) who did not receive immunotherapy (IO). In patients who received IO therapy (N=451), only PD-1+ T-cell density associated with OS (HR: 0.48, (0.36 - 0.65)). To our knowledge, this is the first enterprise-level immune biomarker assay using multiplexed staining, digital imaging, and machine learning to be applied in a prospective manner to clinical specimens at scale. We found that select immune cell densities are prognostic across cancer types and therapies and demonstrated that quantification of multiple cell populations yields better prognostic power than single marker analyses. Citation Format: James Lindsay, Bijaya Sharma, Kristen D. Felt, Anita Giobbie-Hurder, Ian Dryg, Jason L. Weirather, Jennifer Altreuter, Tali Mazor, Priti Kumari, Joao V. Alessi, Ajit J. Nirmal, Michael P. Manos, Ananth R. Kumar, William Lotter, Ethan Cerami, Burce E. Johnson, Neil I. Lindeman, Lynette M. Sholl, Jonathan A. Nowak, Scott J. Rodig. ImmunoPROFILE: A prospective implementation of clinically validated, quantitative immune cell profiling test identifies tumor-infiltrating CD8+ and PD-1+ cell densities as prognostic biomarkers across a 2,023 patient pan-cancer cohort treated with different therapies. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5706.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), ( 2023-10-10), p. OF1-OF15
    Abstract: Immune checkpoint blockade (ICB) has become the standard of care for several solid tumors. Multiple combinatorial approaches have been studied to improve therapeutic efficacy. The combination of antiangiogenic agents and ICB has demonstrated efficacy in several cancers. To improve the mechanistic understanding of synergies with these treatment modalities, we performed screens of sera from long-term responding patients treated with ipilimumab and bevacizumab. We discovered a high-titer antibody response against EGF-like repeats and discoidin I–like domains protein 3 (EDIL3) that correlated with favorable clinical outcomes. EDIL3 is an extracellular protein, previously identified as a marker of poor prognosis in various malignancies. Our Tumor Immune Dysfunction and Exclusion analysis predicted that EDIL3 was associated with immune exclusion signatures for cytotoxic immune cell infiltration and nonresponse to ICB. Cancer-associated fibroblasts (CAF) were predicted as the source of EDIL3 in immune exclusion–related cells. Furthermore, The Cancer Genome Atlas Skin Cutaneous Melanoma (TCGA-SKCM) and CheckMate 064 data analyses correlated high levels of EDIL3 with increased pan-fibroblast TGFβ response, enrichment of angiogenic signatures, and induction of epithelial-to-mesenchymal transition. Our in vitro studies validated EDIL3 overexpression and TGFβ regulation in patient-derived CAFs. In pretreatment serum samples from patients, circulating levels of EDIL3 were associated with circulating levels of VEGF, and like VEGF, EDIL3 increased the angiogenic abilities of patient-derived tumor endothelial cells (TEC). Mechanistically, three-dimensional microfluidic cultures and two-dimensional transmigration assays with TEC endorsed EDIL3-mediated disruption of the lymphocyte function-associated antigen-1 (LFA-1)–ICAM-1 interaction as a possible means of T-cell exclusion. We propose EDIL3 as a potential target for improving the transendothelial migration of immune cells and efficacy of ICB therapy.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2732517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 10, No. 9 ( 2020-09-01), p. 1296-1311
    Abstract: The molecular mechanisms leading to resistance to PD-1 blockade are largely unknown. Here, we characterize tumor biopsies from a patient with melanoma who displayed heterogeneous responses to anti–PD-1 therapy. We observe that a resistant tumor exhibited a loss-of-function mutation in the tumor suppressor gene FBXW7, whereas a sensitive tumor from the same patient did not. Consistent with a functional role in immunotherapy response, inactivation of Fbxw7 in murine tumor cell lines caused resistance to anti–PD-1 in immunocompetent animals. Loss of Fbxw7 was associated with altered immune microenvironment, decreased tumor-intrinsic expression of the double-stranded RNA (dsRNA) sensors MDA5 and RIG-I, and diminished induction of type I IFN and MHC-I expression. In contrast, restoration of dsRNA sensing in Fbxw7-deficient cells was sufficient to sensitize them to anti–PD-1. Our results thus establish a new role for the commonly inactivated tumor suppressor FBXW7 in viral sensing and sensitivity to immunotherapy. Significance: Our findings establish a role of the commonly inactivated tumor suppressor FBXW7 as a genomic driver of response to anti–PD-1 therapy. Fbxw7 loss promotes resistance to anti–PD-1 through the downregulation of viral sensing pathways, suggesting that therapeutic reactivation of these pathways could improve clinical responses to checkpoint inhibitors in genomically defined cancer patient populations. This article is highlighted in the In This Issue feature, p. 1241
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 5, No. 6 ( 2017-06-01), p. 480-492
    Abstract: Blockade of the pathway including programmed death-ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) has produced clinical benefits in patients with a variety of cancers. Elevated levels of soluble PD-L1 (sPD-L1) have been associated with worse prognosis in renal cell carcinoma and multiple myeloma. However, the regulatory roles and function of sPD-L1 particularly in connection with immune checkpoint blockade treatment are not fully understood. We identified four splice variants of PD-L1 in melanoma cells, and all of them are secreted. Secretion of sPD-L1 resulted from alternate splicing activities, cytokine induction, cell stress, cell injury, and cell death in melanoma cells. Pretreatment levels of sPD-L1 were elevated in stage IV melanoma patient sera compared with healthy donors. High pretreatment levels of sPD-L1 were associated with increased likelihood of progressive disease in patients treated by CTLA-4 or PD-1 blockade. Although changes in circulating sPD-L1 early after treatment could not distinguish responders from those with progressive disease, after five months of treatment by CTLA-4 or PD-1 blockade patients who had increased circulating sPD-L1 had greater likelihood of developing a partial response. Induction of sPD-L1 was associated with increased circulating cytokines after CTLA-4 blockade but not following PD-1 blockade. Circulating sPD-L1 is a prognostic biomarker that may predict outcomes for subgroups of patients receiving checkpoint inhibitors. Cancer Immunol Res; 5(6); 480–92. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2732517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 5, No. 1 ( 2017-01-01), p. 17-28
    Abstract: Immune checkpoint therapies targeting CTLA-4 and PD-1 have proven effective in cancer treatment. However, the identification of biomarkers for predicting clinical outcomes and mechanisms to overcome resistance remain as critical needs. Angiogenesis is increasingly appreciated as an immune modulator with potential for combinatorial use with checkpoint blockade. Angiopoietin-2 (ANGPT2) is an immune target in patients and is involved in resistance to anti-VEGF treatment with the monoclonal antibody bevacizumab. We investigated the predictive and prognostic value of circulating ANGPT2 in metastatic melanoma patients receiving immune checkpoint therapy. High pretreatment serum ANGPT2 was associated with reduced overall survival in CTLA-4 and PD-1 blockade–treated patients. These treatments also increased serum ANGPT2 in many patients early after treatment initiation, whereas ipilimumab plus bevacizumab treatment decreased serum concentrations. ANGPT2 increases were associated with reduced response and/or overall survival. Ipilimumab increased, and ipilimumab plus bevacizumab decreased, tumor vascular ANGPT2 expression in a subset of patients, which was associated with increased and decreased tumor infiltration by CD68+ and CD163+ macrophages, respectively. In vitro, bevacizumab blocked VEGF-induced ANGPT2 expression in tumor-associated endothelial cells, whereas ANGPT2 increased PD-L1 expression on M2-polarized macrophages. Treatments elicited long-lasting and functional antibody responses to ANGPT2 in a subset of patients receiving clinical benefit. Our findings suggest that serum ANGPT2 may be considered as a predictive and prognostic biomarker for immune checkpoint therapy and may contribute to treatment resistance via increasing proangiogenic and immunosuppressive activities in the tumor microenvironment. Targeting ANGPT2 provides a rational combinatorial approach to improve the efficacy of immune therapy. Cancer Immunol Res; 5(1); 17–28. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2732517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...