GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (10)
Material
Publisher
  • American Association for Cancer Research (AACR)  (10)
Language
Years
Subjects(RVK)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. CT406-CT406
    Abstract: The novel COVID-19 outbreak has affected more than 200 countries and territories as of March 2020. Given that patients with cancer are generally more vulnerable to infections, systematic analysis of diverse cohorts of patients with cancer affected by COVID-19 are needed. We performed a multi-center study including 105 cancer patients and 536 age-matched non-cancer patients confirmed with COVID-19. Our results showed COVID-19 patients with cancer had higher risks in all severe outcomes. Patients with hematological cancer, lung cancer, or with metastatic cancer (stage IV) had the highest frequency of severe events. Non-metastatic cancer patients experienced similar frequencies of severe conditions to those observed in patients without cancer. Patients who received surgery had higher risks of having severe events, while patients with only radiotherapy did not demonstrate significant differences in severe events when compared to patients without cancer. These findings indicate that cancer patients appear more vulnerable to SARS-COV-2 outbreak. Since this is the first large cohort study on this topic, our report will provide the much-needed information that will benefit global cancer patients. As such, we believe it is extremely important that our study be disseminated widely to alert clinicians and patients. Citation Format: Meng-Yuan Dai, Dian-bo Liu, Miao Liu, Fu-Xiang Zhou, Gui-Ling Li, Zhen Chen, Zhi-An Zhang, Hua-You Md, Meng Wu, Qi-Chao Zheng, Yong Xiong, Hui-Hua Xiong, Chun Wang, Chang-Chun Chen, Fei Xiong, Yan Zhang, Ya-Qin Peng, Si-Ping Ge, Bo Zhen, Ting-Ting Yu, Ling Wang, Hua Wang, Yu Liu, Ye-Shan Chen, Jun-Hua Mei, Xiao-Jia Gao, Zhu-Yan Li, Li-Juan Gan, Can He, Zhen Li, Yu-Ying Shi, Yu-Wen Qi, Jing Yang, Daniel G. Tenen, Li Chai, Lorelei Ann Mucci, Mauricio Santillana, Hongbing Cai. Patients with cancer appear more vulnerable to SARS-COV-2: A multi-center study during the COVID-19 outbreak [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr CT406.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 3 ( 2023-02-03), p. 414-427
    Abstract: Metabolic reprogramming can contribute to colorectal cancer progression and therapy resistance. Identification of key regulators of colorectal cancer metabolism could provide new approaches to improve treatment and reduce recurrence. Here, we demonstrate a critical role for the COP9 signalosome subunit CSN6 in rewiring nucleotide metabolism in colorectal cancer. Transcriptomic analysis of colorectal cancer patient samples revealed a correlation between CSN6 expression and purine and pyrimidine metabolism. A colitis-associated colorectal cancer model established that Csn6 intestinal conditional deletion decreased tumor development and altered nucleotide metabolism. CSN6 knockdown increased the chemosensitivity of colorectal cancer cells in vitro and in vivo, which could be partially reversed with nucleoside supplementation. Isotope metabolite tracing showed that CSN6 loss reduced de novo nucleotide synthesis. Mechanistically, CSN6 upregulated purine and pyrimidine biosynthesis by increasing expression of PHGDH, a key enzyme in the serine synthesis pathway. CSN6 inhibited β-Trcp–mediated DDX5 polyubiquitination and degradation, which in turn promoted DDX5-mediated PHGDH mRNA stabilization, leading to metabolic reprogramming and colorectal cancer progression. Butyrate treatment decreased CSN6 expression and improved chemotherapy efficacy. These findings unravel the oncogenic role of CSN6 in regulating nucleotide metabolism and chemosensitivity in colorectal cancer. Significance: CSN6 deficiency inhibits colorectal cancer development and chemoresistance by downregulating PHGDH to block nucleotide biosynthesis, providing potential therapeutic targets to improve colorectal cancer treatment.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 2 ( 2017-01-15), p. 579-589
    Abstract: Nasopharyngeal carcinoma has the highest rate of metastasis among head and neck cancers, and distant metastasis is the major reason for treatment failure. The underlying molecular mechanisms of nasopharyngeal carcinoma metastasis are not fully understood. Here, we report the identification of serine protease inhibitor Kazal-type 6 (SPINK6) as a functional regulator of nasopharyngeal carcinoma metastasis via EGFR signaling. SPINK6 mRNA was upregulated in tumor and highly metastatic nasopharyngeal carcinoma cells. Immunohistochemical staining of 534 nasopharyngeal carcinomas revealed elevated SPINK6 expression as an independent unfavorable prognostic factor for overall, disease-free, and distant metastasis–free survival. Ectopic SPINK6 expression promoted in vitro migration and invasion as well as in vivo lymph node metastasis and liver metastasis of nasopharyngeal carcinoma cells, whereas silencing SPINK6 exhibited opposing effects. SPINK6 enhanced epithelial–mesenchymal transition by activating EGFR and the downstream AKT pathway. Inhibition of EGFR with a neutralizing antibody or erlotinib reversed SPINK6-induced nasopharyngeal carcinoma cell migration and invasion. Erlotinib also inhibited SPINK6-induced metastasis in vivo. Notably, SPINK6 bound to the EGFR extracellular domain independent of serine protease–inhibitory activity. Overall, our results identified a novel EGFR-activating mechanism in which SPINK6 has a critical role in promoting nasopharyngeal carcinoma metastasis, with possible implications as a prognostic indicator in nasopharyngeal carcinoma patients. Cancer Res; 77(2); 579–89. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2009
    In:  Clinical Cancer Research Vol. 15, No. 2 ( 2009-01-15), p. 641-649
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 15, No. 2 ( 2009-01-15), p. 641-649
    Abstract: Purpose: Indoleamine 2,3-dioxygenase (IDO), an enzyme that degrades tryptophan, is a negative immune regulatory molecule of dendritic cells. IDO-expressing dendritic cells suppress T cell responses and may be immunosuppressive in vivo. We hypothesized that silencing the IDO expression in skin dendritic cells in vivo could elicit antitumor activity in tumor-draining lymph nodes. Experimental Design: The efficiency of IDO-specific small interfering RNA (siRNA) was evaluated in vitro and in vivo. The therapeutic effect was evaluated in MBT-2 murine bladder tumor model and CT-26 colon tumor models. Results: IDO expression was down-regulated in CD11c-positive lymphocytes after IDO siRNA treatment. In vivo skin administration of IDO siRNA inhibited tumor growth and prolonged survival in both tumor models. The number of infiltrated T cells and neutrophils increased at tumor sites, which are correlated with therapeutic efficacy. The T cells may be mainly responsible for the immunologic rejection because the effect was abolished by depletion of CD8-positive T cells. Adoptive transfer of CD11c-positive dendritic cells from vaccinated mice delayed tumor progression. The cancer therapeutic effect was reproducibly observed with another IDO siRNA targeting at different site, suggesting the effect was not due to off-target effect. In a neu-overexpressing MBT-2 tumor model, IDO siRNA enhanced the therapeutic efficacy of Her2/Neu DNA vaccine. Down-regulation of IDO2, an IDO homologue, with siRNA also generated antitumor immunity in vivo. Conclusions: Antitumor immunity can be effectively elicited by physical delivery of siRNAs targeting immunoregulatory genes in skin dendritic cells in vivo, as shown by IDO and IDO2 in this report.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2009
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 25, No. 14 ( 2019-07-15), p. 4271-4279
    Abstract: We aimed to evaluate the value of deep learning on positron emission tomography with computed tomography (PET/CT)–based radiomics for individual induction chemotherapy (IC) in advanced nasopharyngeal carcinoma (NPC). Experimental Design: We constructed radiomics signatures and nomogram for predicting disease-free survival (DFS) based on the extracted features from PET and CT images in a training set (n = 470), and then validated it on a test set (n = 237). Harrell's concordance indices (C-index) and time-independent receiver operating characteristic (ROC) analysis were applied to evaluate the discriminatory ability of radiomics nomogram, and compare radiomics signatures with plasma Epstein–Barr virus (EBV) DNA. Results: A total of 18 features were selected to construct CT-based and PET-based signatures, which were significantly associated with DFS (P & lt; 0.001). Using these signatures, we proposed a radiomics nomogram with a C-index of 0.754 [95% confidence interval (95% CI), 0.709–0.800] in the training set and 0.722 (95% CI, 0.652–0.792) in the test set. Consequently, 206 (29.1%) patients were stratified as high-risk group and the other 501 (70.9%) as low-risk group by the radiomics nomogram, and the corresponding 5-year DFS rates were 50.1% and 87.6%, respectively (P & lt; 0.0001). High-risk patients could benefit from IC while the low-risk could not. Moreover, radiomics nomogram performed significantly better than the EBV DNA-based model (C-index: 0.754 vs. 0.675 in the training set and 0.722 vs. 0.671 in the test set) in risk stratification and guiding IC. Conclusions: Deep learning PET/CT-based radiomics could serve as a reliable and powerful tool for prognosis prediction and may act as a potential indicator for individual IC in advanced NPC.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 10, No. 6 ( 2020-06-01), p. 783-791
    Abstract: The novel COVID-19 outbreak has affected more than 200 countries and territories as of March 2020. Given that patients with cancer are generally more vulnerable to infections, systematic analysis of diverse cohorts of patients with cancer affected by COVID-19 is needed. We performed a multicenter study including 105 patients with cancer and 536 age-matched noncancer patients confirmed with COVID-19. Our results showed COVID-19 patients with cancer had higher risks in all severe outcomes. Patients with hematologic cancer, lung cancer, or with metastatic cancer (stage IV) had the highest frequency of severe events. Patients with nonmetastatic cancer experienced similar frequencies of severe conditions to those observed in patients without cancer. Patients who received surgery had higher risks of having severe events, whereas patients who underwent only radiotherapy did not demonstrate significant differences in severe events when compared with patients without cancer. These findings indicate that patients with cancer appear more vulnerable to SARS-CoV-2 outbreak. Significance: Because this is the first large cohort study on this topic, our report will provide much-needed information that will benefit patients with cancer globally. As such, we believe it is extremely important that our study be disseminated widely to alert clinicians and patients. This article is highlighted in the In This Issue feature, p. 747
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2018
    In:  Cancer Research Vol. 78, No. 12 ( 2018-06-15), p. 3190-3206
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 12 ( 2018-06-15), p. 3190-3206
    Abstract: Alternative splicing (AS) and its regulation play critical roles in cancer, yet the dysregulation of AS and its molecular bases in breast cancer development have not yet been elucidated. Using an in vivo CRISPR screen targeting RNA-binding proteins, we identified PHD finger protein 5A (PHF5A) as a key splicing factor involved in tumor progression. PHF5A expression was frequently upregulated in breast cancer and correlated with poor survival, and knockdown of PHF5A significantly suppressed cell proliferation, migration, and tumor formation. PHF5A was required for SF3b spliceosome stability and linked the complex to histones, and the PHF5A–SF3b complex modulated AS changes in apoptotic signaling. In addition, expression of a short truncated FAS-activated serine/threonine kinase (FASTK) protein was increased after PHF5A ablation and facilitated Fas-mediated apoptosis. This PHF5A-modulated FASTK–AS axis was widely present in breast cancer specimens, particularly those of the triple-negative subtype. Taken together, our findings reveal that PHF5A serves as an epigenetic suppressor of apoptosis and thus provides a mechanistic basis for breast cancer progression and may be a valuable therapeutic target. Significance: This study provides an epigenetic mechanistic basis for the aggressive biology of breast cancer and identifies a translatable therapeutic target. Cancer Res; 78(12); 3190–206. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2020
    In:  Clinical Cancer Research Vol. 26, No. 13 ( 2020-07-01), p. 3408-3419
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 26, No. 13 ( 2020-07-01), p. 3408-3419
    Abstract: Oncogenic mutations in NRAS promote tumorigenesis. Although novel anti-NRAS inhibitors are urgently needed for the treatment of cancer, the protein is generally considered “undruggable” and no effective therapies have yet reached the clinic. STK19 kinase was recently reported to be a novel activator of NRAS and a potential therapeutic target for NRAS-mutant melanomas. Here, we describe a new pharmacologic inhibitor of STK19 kinase for the treatment of NRAS-mutant cancers. Experimental Design: The STK19 kinase inhibitor was identified from a natural compound library using a luminescent phosphorylation assay as the primary screen followed by verification with an in vitro kinase assay and immunoblotting of treated cell extracts. The antitumor potency of chelidonine was investigated in vitro and in vivo using a panel of NRAS-mutant and NRAS wild-type cancer cells. Results: Chelidonine was identified as a potent and selective inhibitor of STK19 kinase activity. In vitro, chelidonine treatment inhibited NRAS signaling, leading to reduced cell proliferation and induction of apoptosis in a panel of NRAS-mutant cancer cell lines, including melanoma, liver, lung, and gastric cancer. In vivo, chelidonine suppressed the growth of NRAS-driven tumor cells in nude mice while exhibiting minimal toxicity. Conclusions: Chelidonine suppresses NRAS-mutant cancer cell growth and could have utility as a new treatment for such malignancies.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2020
    In:  Clinical Cancer Research Vol. 26, No. 14 ( 2020-07-15), p. 3760-3770
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 26, No. 14 ( 2020-07-15), p. 3760-3770
    Abstract: Adults with T-cell lymphoblastic lymphoma (T-LBL) generally benefit from treatment with acute lymphoblastic leukemia (ALL)-like regimens, but approximately 40% will relapse after such treatment. We evaluated the value of CpG methylation in predicting relapse for adults with T-LBL treated with ALL-like regimens. Experimental Design: A total of 549 adults with T-LBL from 27 medical centers were included in the analysis. Using the Illumina Methylation 850K Beadchip, 44 relapse-related CpGs were identified from 49 T-LBL samples by two algorithms: least absolute shrinkage and selector operation (LASSO) and support vector machine–recursive feature elimination (SVM-RFE). We built a four-CpG classifier using LASSO Cox regression based on association between the methylation level of CpGs and relapse-free survival in the training cohort (n = 160). The four-CpG classifier was validated in the internal testing cohort (n = 68) and independent validation cohort (n = 321). Results: The four-CpG–based classifier discriminated patients with T-LBL at high risk of relapse in the training cohort from those at low risk (P & lt; 0.001). This classifier also showed good predictive value in the internal testing cohort (P & lt; 0.001) and the independent validation cohort (P & lt; 0.001). A nomogram incorporating five independent prognostic factors including the CpG-based classifier, lactate dehydrogenase levels, Eastern Cooperative Oncology Group performance status, central nervous system involvement, and NOTCH1/FBXW7 status showed a significantly higher predictive accuracy than each single variable. Stratification into different subgroups by the nomogram helped identify the subset of patients who most benefited from more intensive chemotherapy and/or sequential hematopoietic stem cell transplantation. Conclusions: Our four-CpG–based classifier could predict disease relapse in patients with T-LBL, and could be used to guide treatment decision.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2021
    In:  Cancer Research Vol. 81, No. 1 ( 2021-01-01), p. 64-76
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 1 ( 2021-01-01), p. 64-76
    Abstract: Notch activation has been detected in pancreatic ductal adenocarcinoma (PDAC). However, its role in PDAC metastasis remains unknown. In this study, we identify a Notch-dependent feedback circuit between pancreatic cancer cells and macrophages, which contributes to PDAC metastasis. In this circuit, miR-124 regulated Notch signaling in cancer cells by directly targeting the Notch ligand Jagged 1. Autoamplified Notch signaling promoted the recruitment and activation of macrophages to a tumor-supporting M2-like phenotype via downstream IL8, CCL2, IL1α, and uPA paracrine signaling. In turn, activated macrophage-derived IL6 activated the oncogenic transcription factor STAT3 that directly repressed miR-124 genes via a conserved STAT3-binding site in their promoters, thereby promoting cancer cell epithelial–mesenchymal transition and invasion. Disrupting this circuit suppressed liver metastasis in mouse models. Thus, our study suggests that manipulation of this Notch-dependent circuit has a therapeutic potential for the treatment of PDAC metastasis. Significance: This study provided potential therapeutic targets and robust preclinical evidence for PDAC treatment by interrupting feedback signaling between cancer cells and macrophages with targeted inhibitors.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...