GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (3)
  • 1
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 20, No. 7 ( 2021-07-01), p. 1257-1269
    Abstract: Despite advances in surgery, chemotherapy, and radiation, there are limited treatment options for advanced head and neck squamous cell carcinoma (HNSCC) and survival remains very poor. Therefore, effective therapies are desperately needed. Recently, selective exploitation of DNA damage and replication stress responses has become a novel approach for cancer treatment. Wee1 kinase and Rad51 recombinase are two proteins involved in regulating replication stress and homologous recombination repair in cancer cells. In this study, we investigated the combined effect of Rad51 inhibitor (B02) and Wee1 inhibitor (AZD1775) in vitro and in vivo in various HNSCC cell lines. Clonogenic survival assays demonstrated that B02 synergized with AZD1775 in vitro in all HNSCC cell lines tested. The synergy between these drugs was associated with forced CDK1 activation and reduced Chk1 phosphorylation leading to induction of excessive DNA damage and replication stress, culminating in aberrant mitosis and apoptosis. Our results showed that elevated Rad51 mRNA expression correlated with worse survival in HNSCC patients with HPV-positive tumors. The combination of B02 and AZD1775 significantly inhibited tumor growth in vivo in mice bearing HPV-positive HNSCC tumors as compared to HPV-negative HNSCC. This differential sensitivity appears to be linked to HPV-positive tumors having more in vivo endogenous replication stress owing to transformation by E6 and E7 oncogenes. Furthermore, addition of B02 radiosensitized the HPV-negative HNSCC tumors in vitro and in vivo. In conclusion, our data implicate that a novel rational combination with Rad51 and Wee1 inhibitors holds promise as synthetic lethal therapy, particularly in high-risk HPV-positive HNSCC.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2062135-8
    detail.hit.zdb_id: 2063563-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-05-29), p. ND09-ND09
    Abstract: Therapeutic strategies based on exacerbated stress signaling may represent novel and effective treatment paradigms in oncology. Here, we disclose for the first time the endoplasmic reticulum (ER) stress modulator (ERSM) M3913 that was discovered and developed following a phenotypic screening campaign. Mechanistically, M3913 engages an ER transmembrane protein not yet implicated in cancer biology to induce a Ca2+ shift from the ER towards the cytoplasm, resulting in an unfolded protein response and subsequent antitumor activity in sensitive preclinical models. We detected concurrent elevation of bona fide ER stress markers by several methods including qRT-PCR, Western Blotting analysis, and unbiased transcriptome analysis. Genetic removal of M3913’s putative ER transmembrane target abrogated the M3913-mediated, but not the Thapsigargin-mediated, ER stress response. PK/PD studies confirmed a dose- and time-dependent upregulation of ER stress markers in preclinical cancer models in vivo. As a monotherapy, M3913 induced full and partial tumor regression in preclinical models of multiple myeloma, non-small-cell lung cancer, triple-negative breast cancer, and other cancers. An in vitro combination screen indicated combination potential of M3913 with standard-of-care agents and novel candidate drugs. IND-enabling toxicology and additional mechanism-of-action studies in rat and minipig uncovered specific target organs for M3913 in line with expression of the target in human tissues. This presentation details mechanistic profiling data from M3913, reveals its putative ER-resident target and discusses forward translation studies that support M3913 as a novel therapeutic option for hard-to-treat subtypes of a variety of cancers. Citation Format: Frank Czauderna, Richard Schneider, Shivapriya Ramaswamy, Susanne Brandstetter, Elise Drouin, Olga Bogatyrova, Johanna Mazur, Qing Sun, Catherine Jorand-Lebrun, Eva Sherbetjian, Jonny Nachtigall, Carolyn Wing, Christian Hildebrand, Peter Ellinghaus, Isabelle Lemoine, Mac Johnson, Russell Hoover, Michael Clark, Ralph Lindemann. M3913 induces the maladaptive unfolded protein response through a novel mechanism resulting in strong anti-tumor activity [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr ND09.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 25, No. 18 ( 2019-09-15), p. 5650-5662
    Abstract: TP53 mutations are highly prevalent in head and neck squamous cell carcinoma (HNSCC) and associated with increased resistance to conventional treatment primarily consisting of chemotherapy and radiation. Restoration of wild-type p53 function in TP53-mutant cancer cells represents an attractive therapeutic approach and has been explored in recent years. In this study, the efficacy of a putative p53 reactivator called COTI-2 was evaluated in HNSCC cell lines with different TP53 status. Experimental Design: Clonogenic survival assays and an orthotopic mouse model of oral cancer were used to examine in vitro and in vivo sensitivity of HNSCC cell lines with either wild-type, null, or mutant TP53 to COTI-2 alone, and in combination with cisplatin and/or radiation. Western blotting, cell cycle, live-cell imaging, RNA sequencing, reverse-phase protein array, chromatin immunoprecipitation, and apoptosis analyses were performed to dissect molecular mechanisms. Results: COTI-2 decreased clonogenic survival of HNSCC cells and potentiated response to cisplatin and/or radiation in vitro and in vivo irrespective of TP53 status. Mechanistically, COTI-2 normalized wild-type p53 target gene expression and restored DNA-binding properties to the p53-mutant protein in HNSCC. In addition, COTI-2 induced DNA damage and replication stress responses leading to apoptosis and/or senescence. Furthermore, COTI-2 lead to activation of AMPK and inhibition of the mTOR pathways in vitro in HNSCC cells. Conclusions: COTI-2 inhibits tumor growth in vitro and in vivo in HNSCC likely through p53-dependent and p53-independent mechanisms. Combination of COTI-2 with cisplatin or radiation may be highly relevant in treating patients with HNSCC harboring TP53 mutations.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...