GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 64, No. 14 ( 2004-07-15), p. 4774-4782
    Abstract: We have recently identified signal transducer and activator of transcription 5 (Stat5) as a critical survival factor for prostate cancer cells. We now report that activation of Stat5 is associated with high histological grade of human prostate cancer. Specifically, immunohistochemical analysis demonstrated a strong positive correlation with activation of Stat5 and high Gleason score in 114 human prostate cancers. To investigate the mechanisms underlying constitutive activation of Stat5 in prostate cancer, a dominant-negative mutant of Janus kinase 2 (Jak2) was delivered by adenovirus to CWR22Rv cells. Dominant-negative-Jak2 effectively blocked the activation of Stat5 whereas wild-type Jak2 enhanced activation, indicating that Jak2 is the main kinase that phosphorylates Stat5 in human prostate cancer cells. A ligand-induced mechanism for activation of Stat5 in prostate cancer was suggested by the ability of prolactin (Prl) to stimulate activation of both Jak2 and Stat5 in CWR22Rv human prostate cancer cells and in CWR22Rv xenograft tumors. In addition, Prl restored constitutive activation of Stat5 in five of six human prostate cancer specimens in ex vivo long-term organ cultures. Finally, Prl protein was locally expressed in the epithelium of 54% of 80 human prostate cancer specimens with positive correlation with high Gleason scores and activation of Stat5. In conclusion, our data indicate that increased activation of Stat5 was associated with more biologically aggressive behavior of prostate cancer. The results further suggest that Jak2 is the principal Stat5 tyrosine kinase in human prostate cancer, possibly activated by autocrine/paracrine Prl.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2004
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 4764-4764
    Abstract: Pancreatic ductal adenocarcinoma (PDAC) is the 3rd leading cause of cancer related deaths in the U.S. Recent advances in understanding RNA biology in PDAC have shed light on post-transcriptional regulation of genes and pathways through RNA binding proteins (RBP). Our lab has demonstrated that HuR, an RBP, is overexpressed in PDAC cells and stabilizes pro-survival mRNAs. Additionally, our work and others have demonstrated that this level of gene regulation can support drug resistance in PDAC cells. A synthetic lethal strategy employing Poly-ADP ribose polymerase inhibitors (PARPi) in a subset of patients with DNA repair deficient pancreatic cancers has been gaining interest. However, the success of PARPi is often hindered by the emergence of drug resistance in patients who initially respond. We have published that short-term PARPi treatment of PDAC cells causes activation of HuR where it stabilizes a DNA repair enzyme, PAR-glycohydrolase, and mediates acute PARPi resistance. In this study, we generated olaparib acquired resistant pancreatic cancer cells in vitro and acquired pancreatic patient derived xenograft cell lines (pre- and post PARPi) to understand acute versus acquired resistant mechanism(s). In characterising the acquired resistant model of PARPi resistance, we found that these cells are & gt;20 fold more resistant to olaparib and platinums and & gt;5 fold resistant to other PARPi like rucaparib and veliparib, compared to parental cells. No cross resistance was seen with other chemotherapeutics like gemcitabine. Additionally, we also found acquired resistant cells lost PARP-1 protein expression compared to parental cells. Bioinformatic analyses on HuR-RNA immunoprecipitation-microarray (RIP-microarray) data from acutely treated olaparib cells show enrichment of pro-survival mRNAs. Interestingly, these mRNAs are significantly downregulated in acquired resistant cells compared to control cells (i.e., negative log2 fold changes, p & lt;0.001) in differential expression of HuR and HuR established targets. Interestingly, upregulated gene transcripts in these samples belong to pathways that negatively regulate biosynthetic and metabolic processes, and hence may represent pathways to target. Further, in vitro analyses show that parental PDAC cells are sensitive to combined inhibition of PARP and HuR but acquired resistant cells fail to respond to HuR inhibition. In conclusion, HuR mediates acute resistance to PARPi in PDAC cells and HuR inhibitor therapy could enhance PARPi therapy immediately, yet is most likely not useful in the setting of acquired- resistance. Future studies will explore genetic alterations and novel HuR-independent pathways in PARPi acquired resistant cells. Finally, we have begun a line of investigation of combining PARPi therapy with HuR inhibitors in an effort to optimize upfront therapeutic efficacy Citation Format: Aditi Jain, Matthew McCoy, Lebaron A. Agostini, Yuriy Gusev, Subha Madhavan, Michael Pishvaian, Sankar Addya, Eric Londin, Maria R. Gurevich, Chani Stossel, Talia Golan, Charles J. Yeo, Jonathan R. Brody. A global transcriptome analysis of pancreatic cancer cells distinguishes between acute and acquired PARP inhibitor resistance mechanisms [abstract]. In: Proceedings of the American Association for Can cer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 4764.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...