GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (5)
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 7 ( 2021-04-01), p. 2111-2118
    Abstract: The World Trade Center (WTC) attack of September 11, 2001 created an unprecedented environmental exposure to known and suspected carcinogens. High incidence of multiple myeloma and precursor conditions has been reported among first responders to the WTC disaster. To expand on our prior screening studies, and to characterize the genomic impact of the exposure to known and potential carcinogens in the WTC debris, we were motivated to perform whole-genome sequencing (WGS) of WTC first responders and recovery workers who developed a plasma cell disorder after the attack. Experimental Design: We performed WGS of nine CD138-positive bone marrow mononuclear samples from patients who were diagnosed with plasma cell disorders after the WTC disaster. Results: No significant differences were observed in comparing the post-WTC driver and mutational signature landscapes with 110 previously published WGSs from 56 patients with multiple myeloma and the CoMMpass WGS cohort (n = 752). Leveraging constant activity of the single-base substitution mutational signatures 1 and 5 over time, we estimated that tumor-initiating chromosomal gains were windowed to both pre- and post-WTC exposure. Conclusions: Although limitations in sample size preclude any definitive conclusions, our findings suggest that the observed increased incidence of plasma cell neoplasms in this population is due to complex and heterogeneous effects of the WTC exposure that may have initiated or contributed to progression of malignancy.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 5747-5747
    Abstract: Patients treated with chemotherapy (CT) and/or autologous stem-cell transplantation (ASCT) are at risk for therapy-related myeloid neoplasms (tMN). Certain cytotoxic agents introduce mutations within distinct trinucleotide contexts resulting in a unique barcode for each exposed cell. We leveraged mutational signatures to investigate the role of CT in the genomic landscape of tMN with respect to antecedent clonal hematopoiesis (CH). We analyzed 32 tMN and 2 tALL from 33 patients and interrogated for copy number abnormalities (CNA), structural variants (SV), single nucleotide variants (SNV), and mutational signatures. For 7 patients with tMN post-melphalan/ASCT, we investigated antecedent CH using targeted sequencing on pre-melphalan samples, including autograft products. CH variants that became clonal in tumor were seen in 5/7 pre-melphalan/ASCT samples (TP53, RUNX1, NCOR1, NF1, CREBBP, DNMT3A, and PPM1D). Complex SV were seen in 7 tMNs; including chromothripsis in 6 (19.4%). In 4 cases, chromothripsis involved chromosome 19 with hyper-amplification of the SMARCA4 locus (≥5 copies). Mutational signature analysis revealed 6 known single base substitution (SBS) signatures in tMN including melphalan (SBS-MM1) and platinum signatures (SBS31, SBS35, and E-SBS37). TMNs with CT signatures had higher mutation burden than those without (p = 0.004). 17 patients with exposure to agents other than melphalan/platinum did not have increased mutational burden with respect to de novo AML (TCGA; NEJM, 2013). All patients with prior platinum exposure (including tALL, n=9) had platinum SBS signatures while only 2 of 7 patients with prior melphalan/ASCT had a melphalan signature (SBS-MM1). Detection of CT signatures in bulk sequencing relies on one cell, with its barcode of mutations, to expand to clonal dominance. Given pre-existent CH, including in 3/3 autograft products, absence of a CT signature despite melphalan exposure implies progression by a clone that escaped CT exposure with stem-cell collection and reinfusion. Conversely, all platinum-exposed tAML had signature evidence of exposure confirming existence of CH prior to exposure and supporting post-CT single-cell expansion. TMNs from 3 patients exposed to sequential platinum and melphalan/ASCT had platinum but not melphalan signatures confirming single-cell expansion of the pre-tMN CH clone post-platinum but with escape from exposure to melphalan via leukapheresis. Chromothripsis events bore only non-duplicated CT-induced mutations, indicative of acquisition prior to, and not directly caused by, CT exposure. These disparities suggest that ASCT provides a mechanism for CH clones to escape CT and re-engraft with transplant. Coupled with driver events accrued prior to CT, this suggest that CT-induced mutagenesis may be less important than other factors, such as CT-induced immunosuppression, in the expansion of pre-TMN CH clones. Citation Format: Benjamin Diamond, Bachisio Ziccheddu, Eileen M. Boyle, Kylee Maclachlan, Justin Taylor, Justin M. Watts, Sydney X. Lu, David G. Coffey, Niccolo Bolli, Elli Papaemmanuil, Kelly Bolton, Jae H. Park, Heather Landau, Karuna Ganesh, Mikkael A. Sekeres, Stephen Nimer, David J. Chung, Caleb H. Ho, Mikhail Roshal, Alexander Lesokhin, Gareth Morgan, Ola Landgren, Francesco Maura. Chemotherapy-related mutational signatures reveal the origins of therapy-related myeloid neoplasms [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5747.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 10 ( 2022-05-13), p. 2160-2166
    Abstract: Minimal residual disease (MRD) negativity is a strong predictor for outcome in multiple myeloma. To assess V(D)J clonotype capture using the updated Adaptive next-generation sequencing (NGS) MRD assay in a clinical setting, we analyzed baseline and follow-up samples from patients with multiple myeloma who achieved deep clinical responses. Experimental Design: A total of 159 baseline and 31 follow-up samples from patients with multiple myeloma were sequenced using the NGS MRD assay. Baseline samples were also sequenced using a targeted multiple myeloma panel (myTYPE). We estimated ORs with 95% confidence intervals (CI) for clonotypes detection using logistic regression. Results: The V(D)J clonotype capture rate was 93% in baseline samples with detectable genomic aberrations, indicating presence of tumor DNA, assessed through myTYPE. myTYPE-positive samples had significantly higher V(D)J clonotype detection rates in univariate (OR, 7.3; 95% CI, 2.8–22.6) and multivariate analysis (OR, 4.4; 95% CI, 1.4–16.9; P = 0.016). Higher disease burden was associated with higher probability of V(D)J clonotype capture, meanwhile no such association was found for age, gender, or type of heavy or light immunoglobulin chain. All V(D)J clonotypes detected at baseline were detected in MRD-positive samples indicating that the V(D)J clonotypes remained stable and did not undergo further rearrangements during follow-up. Of the 31 posttreatment samples, 12 were MRD-negative using the NGS MRD assay. Conclusions: NGS for V(D)J rearrangements in multiple myeloma offers a reliable and sensitive method for MRD tracking with high detection rates in the clinical setting.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 11, No. 8 ( 2012-08-01), p. 1781-1788
    Abstract: DNA cross-linking agents are frequently used in the treatment of multiple myeloma–generating lesions, which activate checkpoint kinase 1 (Chk1), a critical transducer of the DNA damage response. Chk1 activation promotes cell survival by regulating cell-cycle arrest and DNA repair following genotoxic stress. The ability of AZD7762, an ATP-competitive Chk1/2 inhibitor to increase the efficacy of the DNA-damaging agents bendamustine, melphalan, and doxorubicin was examined using four human myeloma cell lines, KMS-12-BM, KMS-12-PE, RPMI-8226, and U266B1. The in vitro activity of AZD7762 as monotherapy and combined with alkylating agents and the “novel” drug bortezomib was evaluated by studying its effects on cytotoxicity, signaling, and apoptotic pathways. The Chk1/2 inhibitor AZD7762 potentiated the antiproliferative effects of bendamustine, melphalan, and doxorubicin but not bortezomib in multiple myeloma cell lines that were p53-deficient. Increased γH2AX staining in cells treated with bendamustine or melphalan plus AZD7762 indicates a greater degree of DNA damage with combined therapy. Abrogation of the G2–M checkpoint by AZD7762 resulted in mitotic catastrophe with ensuing apoptosis evidenced by PARP and caspase-3 cleavage. In summary, the cytotoxic effects of bendamustine, melphalan and doxorubicin on p53-deficient multiple myeloma cell lines were enhanced by the coadministration of AZD7762. These data provide a rationale for testing these combinations in patients with relapsed and/or refractory multiple myeloma. Mol Cancer Ther; 11(8); 1781–8. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 23 ( 2022-12-01), p. 5149-5155
    Abstract: Sustained minimal residual disease (MRD) negativity is associated with long-term survival in multiple myeloma. The gut microbiome is affected by diet, and in turn can modulate host immunity, for example through production of short-chain fatty acids including butyrate. We hypothesized that dietary factors affect the microbiome (abundance of butyrate-producing bacteria or stool butyrate concentration) and may be associated with multiple myeloma outcomes. Experimental Design: We examined the relationship of dietary factors (via a food frequency questionnaire), stool metabolites (via gas chromatography–mass spectrometry), and the stool microbiome (via 16S sequencing - α-diversity and relative abundance of butyrate-producing bacteria) with sustained MRD negativity (via flow cytometry at two timepoints 1 year apart) in myeloma patients on lenalidomide maintenance. The Healthy Eating Index 2015 score and flavonoid nutrient values were calculated from the food frequency questionnaire. The Wilcoxon rank sum test was used to evaluate associations with two-sided P & lt; 0.05 considered significant. Results: At 3 months, higher stool butyrate concentration (P = 0.037), butyrate producers (P = 0.025), and α-diversity (P = 0.0035) were associated with sustained MRD negativity. Healthier dietary proteins, (from seafood and plants), correlated with butyrate at 3 months (P = 0.009) and sustained MRD negativity (P = 0.05). Consumption of dietary flavonoids, plant nutrients with antioxidant effects, correlated with stool butyrate concentration (anthocyanidins P = 0.01, flavones P = 0.01, and flavanols P = 0.02). Conclusions: This is the first study to demonstrate an association between a plant-based dietary pattern, stool butyrate production, and sustained MRD negativity in multiple myeloma, providing rationale to evaluate a prospective dietary intervention.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...