GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (6)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 6_Supplement ( 2017-03-15), p. B30-B30
    Abstract: Ovarian cancer is the most lethal of gynecological cancers killing 60% of women diagnosed with the disease within 5 years. The major contributor to this high mortality is the emergence of chemotherapy resistance; the tumor is initially sensitive to chemotherapy (especially cisplatin, the mainstay of treatment) but recurs with increasingly resistant disease. Effective methods of overcoming treatment resistance are a major unmet medical need and would prolong survival and improve quality of life for women with this disease. We have shown previously that the RNA binding protein La-related protein 1 (LARP1) binds and post-transcriptionally regulates the stability of mRNAs encoding cell survival and stress response proteins including mTOR, BCL2 and BIK. In ovarian cancer tissue, elevated levels of LARP1 protein correlate with adverse survival outcome and chemotherapy resistance. In vivo inhibition of LARP1 using therapeutic RNA interference (packaged in DOPC nanoliposomes) restores cisplatin sensitivity in resistant ovarian cancer xenograft models. In concurrent studies, using a novel ultra-high performance liquid chromatography tandem mass spectrometry method, we have quantified LARP1 in the circulation of ovarian cancer patients and found that high levels correspond with poor prognosis. Circulating LARP1 has prognostic significance and may act as a companion biomarker to a LARP1 inhibitor. We conclude that LARP1, through its regulation of multiple mRNAs within critical pathophysiological pathways, is an important cancer therapeutic target and that RNA-based drugs designed to target LARP1 restore chemotherapy sensitivity in xenograft models. Citation Format: Essam A. Ghazaly, John Le Quesne, Dahai Jiang, Selanere L. Mangala, James Chettle, Cristian Rodriguez-Aguayo, Gabriel Lopez-Berestein, Chathunissa Gnanaranjan, Manuela Mura, Chara Stavraka, Anil K. Sood, Sarah P. Blagden. The RNA-binding protein LARP1 is a cancer therapeutic target. [abstract]. In: Proceedings of the AACR Special Conference on Translational Control of Cancer: A New Frontier in Cancer Biology and Therapy; 2016 Oct 27-30; San Francisco, CA. Philadelphia (PA): AACR; Cancer Res 2017;77(6 Suppl):Abstract nr B30.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 8_Supplement ( 2010-04-15), p. 5517-5517
    Abstract: BACKGROUND: RNA interference (RNAi) holds great potential as a therapeutic strategy. However, efficient and biocompatible methods are needed for systemic delivery of siRNA. In order to develop a biologically safe delivery system, we utilized rHDL nanoparticles for systemic delivery of siRNA. METHODS: We used fluorescently (Alexa-555) tagged siRNA to test the extent of siRNA delivery. For proof-of-concept studies, we targeted FAK and STAT3, which are considered critical targets in many solid tumors. Several orthotopic mouse models of ovarian carcinoma (HeyA8, SKOV3ip1, and HeyA8-MDR) and colon cancer (HCT116) were utilized. Following treatment, effects on tumor weight, angiogenesis (CD31), cell proliferation (Ki-67), and apoptosis (TUNEL) were assessed. RESULTS: The rHDL nanoparticles delivered siRNA in a scavenger receptor (SR-B1) -specific fashion to ∼80% of a given tumor following a single intravenous injection. FAK or STAT3 targeted siRNA-rHDL effectively silenced FAK or STAT3 expression in vivo for over 4 days. In the HeyA8 orthotopic ovarian cancer model, FAK siRNA-rHDL or docetaxel monotherapy resulted in 62 to 74% reduction in tumor weight (p & lt;0.01, 0.005, respectively) and the combination treatment resulted in the greatest reduction in tumor weight (by 96%; p & lt;0.002), and the number of tumor nodules (by 74%; p & lt;0.015). Additionally, STAT3 siRNA-rHDL alone demonstrated 62 to 76% reduction in tumor weight in several orthotopic ovarian cancer models (HeyA8, SKOV3ip1, and HeyA8-MDR; P & lt;0.04, 0.04, and 0.01, respectively) compared to control treatment. Docetaxel treatment alone resulted in a 62 to 77% decrease in tumor growth in the HeyA8 and SKOV3ip1 models (P & lt;0.01, and & lt;0.03, respectively). Combination of docetaxel and STAT3 siRNA-rHDL resulted in 84 to 96% reduction in tumor growth (HeyA8; P & lt;0.003, SKOV3ip1; P & lt;0.009) compared to either treatment alone. Additionally, in the HeyA8-MDR model, the addition of STAT3 silencing to docetaxel treatment reduced tumor growth by 89% compared to docetaxel monotherapy (P & lt;0.001). In the metastatic mouse model of colon cancer (HCT116), STAT3 siRNA-rHDL or oxaliplatin alone resulted in 79% and 55% reduction in tumor weight (respectively; P & lt;0.01, both) while combination of STAT3 siRNA-rHDL and oxaliplatin resulted in 96% reduction in tumor weight and 86% reduction in number of metastatic tumor nodules (P & lt;0.01, both). Furthermore, the combination of STAT3 siRNA/rHDL and docetaxel significantly reduced cell proliferation (by 48%; P & lt;0.001), MVD (by 88%; P & lt;0.001) and cell survival (by 30-folds; P & lt;0.001) compared to control siRNA/rHDL. H & E staining of organs following therapy experiments revealed no significant changes compared to the control group. CONCLUSION: rHDL is a novel nanocarrier that is safe and highly effective for delivery of therapeutic payloads. These findings have profound clinical implications for cancer treatment in humans. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 5517.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 9 ( 2010-05-01), p. 3687-3696
    Abstract: RNA interference (RNAi) is a powerful approach for silencing genes associated with a variety of pathologic conditions; however, in vivo RNAi delivery has remained a major challenge due to lack of safe, efficient, and sustained systemic delivery. Here, we report on a novel approach to overcome these limitations using a multistage vector composed of mesoporous silicon particles (stage 1 microparticles, S1MP) loaded with neutral nanoliposomes (dioleoyl phosphatidylcholine, DOPC) containing small interfering RNA (siRNA) targeted against the EphA2 oncoprotein, which is overexpressed in most cancers, including ovarian. Our delivery methods resulted in sustained EphA2 gene silencing for at least 3 weeks in two independent orthotopic mouse models of ovarian cancer following a single i.v. administration of S1MP loaded with EphA2-siRNA-DOPC. Furthermore, a single administration of S1MP loaded with-EphA2-siRNA-DOPC substantially reduced tumor burden, angiogenesis, and cell proliferation compared with a noncoding control siRNA alone (SKOV3ip1, 54%; HeyA8, 57%), with no significant changes in serum chemistries or in proinflammatory cytokines. In summary, we have provided the first in vivo therapeutic validation of a novel, multistage siRNA delivery system for sustained gene silencing with broad applicability to pathologies beyond ovarian neoplasms. Cancer Res; 70(9); 3687–96. ©2010 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 3080-3080
    Abstract: Imatinib is a BCR-ABL kinase inhibitor and the most used drug in chronic myeloid leukemia (CML). MYC (c-Myc) is a transcription factor frequently deregulated in human cancer that exerts multiple biological activities, including differentiation inhibition. We found that MYC expression is higher in bone marrow cells form CML patients at diagnosis, as compared with healthy controls. Moreover, high MYC levels at diagnosis correlated with a poorer response to imatinib treatment. One of the major characteristics of CML progression is the loss of cell differentiation. We showed that low concentrations of imatinib induce erythroid differentiation in the CML-derived K562 cell line. We have studied the effect of MYC on the differentiation induced by imatinib using K562 sublines carrying inducible (by zinc cation) or activable (by 4-hydoxy-tamoxifen) MYC alleles. In both cell lines, MYC largely prevented the erythroid differentiation induced by imatinib. The differentiation inhibition mediated by MYC is not due to increased proliferation of MYC-expressing cells or enhanced apoptosis of differentiated cells in the presence of MYC. We previously reported that p27/Kip1 (p27) overexpression induces erythroid differentiation in K562. Thus, we explored the effect of imatinib on p27 levels and we found that imatinib up-regulated p27 in a time- and concentration-dependent manner. siRNA-mediated silencing of p27 antagonized the erythroid differentiation induced by imatinib, indicating that p27 up-regulation is at least in part responsible for differentiation. MYC abrogated the imatinib-induced up-regulation of p27KIP1 concomitantly with the differentiation inhibition, suggesting that MYC inhibits imatinib-mediated differentiation of K562 cells by antagonizing p27 up-regulation. We previously reported that MYC induced SKP2, a component of the ubiquitin ligase complex that targets p27 for degradation. MYC was able to induce SKP2 in the presence of imatinib. Thus, MYC-mediated inhibition of the differentiating effect of imatinib in CML cells is in part a consequence of the SKP2 induction of MYC, which in turn would down-regulate p27. The results suggest that, although MYC deregulation does not directly confer resistance to imatinib, it might be a factor that contributes to progression of CML through the inhibition of differentiation. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3080. doi:1538-7445.AM2012-3080
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 11 ( 2017-06-01), p. 2891-2904
    Abstract: Purpose: The oncogenic miR-155 is upregulated in many human cancers, and its expression is increased in more aggressive and therapy-resistant tumors, but the molecular mechanisms underlying miR-155-induced therapy resistance are not fully understood. The main objectives of this study were to determine the role of miR-155 in resistance to chemotherapy and to evaluate anti-miR-155 treatment to chemosensitize tumors. Experimental Design: We performed in vitro studies on cell lines to investigate the role of miR-155 in therapy resistance. To assess the effects of miR-155 inhibition on chemoresistance, we used an in vivo orthotopic lung cancer model of athymic nude mice, which we treated with anti-miR-155 alone or in combination with chemotherapy. To analyze the association of miR-155 expression and the combination of miR-155 and TP53 expression with cancer survival, we studied 956 patients with lung cancer, chronic lymphocytic leukemia, and acute lymphoblastic leukemia. Results: We demonstrate that miR-155 induces resistance to multiple chemotherapeutic agents in vitro, and that downregulation of miR-155 successfully resensitizes tumors to chemotherapy in vivo. We show that anti-miR-155-DOPC can be considered non-toxic in vivo. We further demonstrate that miR-155 and TP53 are linked in a negative feedback mechanism and that a combination of high expression of miR-155 and low expression of TP53 is significantly associated with shorter survival in lung cancer. Conclusions: Our findings support the existence of an miR-155/TP53 feedback loop, which is involved in resistance to chemotherapy and which can be specifically targeted to overcome drug resistance, an important cause of cancer-related death. Clin Cancer Res; 23(11); 2891–904. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 24, No. 22 ( 2018-11-15), p. 5697-5709
    Abstract: Purpose: On the basis of the identified stress-independent cellular functions of activating transcription factor 4 (ATF4), we reported enhanced ATF4 levels in MCF10A cells treated with TGFβ1. ATF4 is overexpressed in patients with triple-negative breast cancer (TNBC), but its impact on patient survival and the underlying mechanisms remain unknown. We aimed to determine ATF4 effects on patients with breast cancer survival and TNBC aggressiveness, and the relationships between TGFβ and ATF4. Defining the signaling pathways may help us identify a cell signaling–tailored gene signature. Experimental Design: Patient survival data were determined by Kaplan–Meier analysis. Relationship between TGFβ and ATF4, their effects on aggressiveness (tumor proliferation, metastasis, and stemness), and the underlying pathways were analyzed in three TNBC cell lines and in vivo using patient-derived xenografts (PDX). Results: ATF4 overexpression correlated with TNBC patient survival decrease and a SMAD-dependent crosstalk between ATF4 and TGFβ was identified. ATF4 expression inhibition reduced migration, invasiveness, mammosphere-forming efficiency, proliferation, epithelial–mesenchymal transition, and antiapoptotic and stemness marker levels. In PDX models, ATF4 silencing decreased metastases, tumor growth, and relapse after chemotherapy. ATF4 was shown to be active downstream of SMAD2/3/4 and mTORC2, regulating TGFβ/SMAD and mTOR/RAC1–RHOA pathways independently of stress. We defined an eight-gene signature with prognostic potential, altered in 45% of 2,509 patients with breast cancer. Conclusions: ATF4 may represent a valuable prognostic biomarker and therapeutic target in patients with TNBC, and we identified a cell signaling pathway–based gene signature that may contribute to the development of combinatorial targeted therapies for breast cancer. Clin Cancer Res; 24(22); 5697–709. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...