GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (3)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 4626-4626
    Abstract: Developing realistic preclinical models using clinical samples that reflect complex tumor biology is critical to advancing cancer research. Patient-derived preclinical tumor models are the optimal tool for understanding drug action patterns and resistance mechanisms. In order to improve the capability of drug R & D in our institute (NHRI-IBPR), we have generated several patient-derived xenograft (PDX) models and characterized the genomic signature and responsiveness to standard-of-care (SOC) therapy. DBPR216, an orally bioavailable multikinase inhibitor, showed potent effect for treatment of gastrointestinal stromal tumors (GISTs) and acute myeloid leukemia (AML) through targeting of c-KIT and FLT-3, respectively. In order to further discover other indications of DBPR216 for clinical application, we investigated the anti-tumor effect of DBPR216 in several in-house PDX models. Among them, we found that DBPR216 was effectively to suppress PDX tumor growth in the immuno-deficient mice in two colorectal adenocarcinoma PDX models, C008 and C015. These PDX models showed similar genomic features with original tumor samples from patients when test using targeted sequencing of cancer related genes. To further identify if DBPR216 is superior to other kinase inhibitors and SOC therapy, we used in vitro PDX cell proliferation assay to quickly examine the anti-tumor effect of DBPR216 compared to a panel of therapeutic drugs. The result demonstrated that DBPR216 appeared to be superior in potency to kinase inhibitors (Regorafenib, Afatinib, Sunitinib, and Imatinib) and SOC therapy (Irinotecan, 5-FU, and Oxaliplatin). Combining the kinase profiling of DBPR216 and mutational analysis of C008 and C015 PDX models, we proposed that DDR2, FLT1, PDGFRα, PDGFRβ, RET, and SRC may be the potential targets of DBPR216 in these PDX models, and need further elucidation. Taken together, we found that DBPR216 exhibits potent anticancer effect against colorectal cancer and may bring the better opportunity than Regorafenib, a therapeutic agent for metastatic colorectal cancer in clinical. DBPR216 is now under preclinical development for further IND submission. Citation Format: Ching-Chuan Kuo, Weir-Torn Jiaang, Jing-Jim Ou, Chiung-Tong Chen, Shu-Ching Hsu, Chuan Shih, Li-Mei Lin, Manwu Sun, Yi-Hsin Wang, Zih-Ting Huang, Jang-Yang Chang, Shau-Hua Ueng. Use of integrated genomic analyses in patient-derived tumor model to discover new clinical indications for the multikinase inhibitor drug candidate, DBPR216 [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 4626.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 21, No. 7 ( 2023-07-05), p. 664-674
    Abstract: The glycoprotein CD44 is a key regulator of malignant behaviors in breast cancer cells. To date, hyaluronic acid (HA)-CD44 signaling pathway has been widely documented in the context of metastatic bone diseases. Core 1 β1,3-galactosyltransferase (C1GALT1) is a critical enzyme responsible for the elongation of O-glycosylation. Aberrant O-glycans is recognized as a hallmark in cancers. However, the effects of C1GALT1 on CD44 signaling and bone metastasis remain unclear. In this study, IHC analysis indicated that C1GALT1 expression positively correlates with CD44 in breast cancer. Silencing C1GALT1 accumulates the Tn antigen on CD44, which decreases CD44 levels and osteoclastogenic signaling. Mutations in the O-glycosites on the stem region of CD44 impair its surface localization as well as suppress cell–HA adhesion and osteoclastogenic effects of breast cancer cells. Furthermore, in vivo experiments demonstrated the inhibitory effect of silencing C1GALT1 on breast cancer bone metastasis and bone loss. In conclusion, our study highlights the importance of O-glycans in promoting CD44-mediated tumorigenic signals and indicates a novel function of C1GALT1 in driving breast cancer bone metastasis. Implications: Truncation of GalNAc-type O-glycans by silencing C1GALT1 suppresses CD44-mediated osteoclastogenesis and bone metastasis in breast cancer. Targeting the O-glycans on CD44 may serve as a potential therapeutic target for blocking cancer bone metastasis.
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2016
    In:  Clinical Cancer Research Vol. 22, No. 16_Supplement ( 2016-08-15), p. A16-A16
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 22, No. 16_Supplement ( 2016-08-15), p. A16-A16
    Abstract: Chronic lymphocytic leukemia (CLL) is a monoclonal disorder characterized by a progressive accumulation of functionally incompetent lymphocytes. However, lack of immortalized cell line representative of the CLL disease has hampered a full understanding of disease pathogenesis and development of novel therapeutic agents for treatment. There were very few representative CLL cell lines are available now. To this end, we have tested different culture condition with addition of growth factor supplements to generate CLL cell lines from highly purified peripheral blood B cells of CLL patients. Recently, we have successfully established a new CLL cell line, named CCGL007. CCGL007 cells grow as suspension in liquid culture. Surface marker analysis with a panel of monoclonal antibodies revealed that CCGL007 cell line expresses B cell markers. The chromosomal, immunophenotypic, molecular biologic characteristics, and in vivo tumorigenesis potential of CCGL007 is under investigation. We have used this cell model to test the efficacy of selected standard chemotherapy drugs and new therapeutic agents, such as ibrutinib and several novel in-house BTK inhibitors, against CLL cell growth, and CCGL007 represents as a suitable preclinical model for testing pharmacological agents. Citation Format: Ching-Chuan Kuo, Chih-Cheng Chen, Chih-Hsiang Huang, Lin Li-Mei. Establishment and characterization of CCGL007, a novel human chronic lymphocytic leukemia cell line. [abstract]. In: Proceedings of the AACR Special Conference: Patient-Derived Cancer Models: Present and Future Applications from Basic Science to the Clinic; Feb 11-14, 2016; New Orleans, LA. Philadelphia (PA): AACR; Clin Cancer Res 2016;22(16_Suppl):Abstract nr A16.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...