GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (3)
  • 1
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 12, No. 4 ( 2022-04-01), p. 1152-1169
    Abstract: NUP98 fusion oncoproteins (FO) are drivers in pediatric leukemias and many transform hematopoietic cells. Most NUP98 FOs harbor an intrinsically disordered region from NUP98 that is prone to liquid–liquid phase separation (LLPS) in vitro. A predominant class of NUP98 FOs, including NUP98–HOXA9 (NHA9), retains a DNA-binding homeodomain, whereas others harbor other types of DNA- or chromatin-binding domains. NUP98 FOs have long been known to form puncta, but long-standing questions are how nuclear puncta form and how they drive leukemogenesis. Here we studied NHA9 condensates and show that homotypic interactions and different types of heterotypic interactions are required to form nuclear puncta, which are associated with aberrant transcriptional activity and transformation of hematopoietic stem and progenitor cells. We also show that three additional leukemia-associated NUP98 FOs (NUP98–PRRX1, NUP98–KDM5A, and NUP98–LNP1) form nuclear puncta and transform hematopoietic cells. These findings indicate that LLPS is critical for leukemogenesis by NUP98 FOs. Significance: We show that homotypic and heterotypic mechanisms of LLPS control NUP98–HOXA9 puncta formation, modulating transcriptional activity and transforming hematopoietic cells. Importantly, these mechanisms are generalizable to other NUP98 FOs that share similar domain structures. These findings address long-standing questions on how nuclear puncta form and their link to leukemogenesis. This article is highlighted in the In This Issue feature, p. 873
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 17 ( 2020-09-01), p. 3732-3744
    Abstract: Germline mutations in TP53 cause a rare high penetrance cancer syndrome, Li–Fraumeni syndrome (LFS). Here, we identified a rare TP53 tetramerization domain missense mutation, c.1000G & gt;C;p.G334R, in a family with multiple late-onset LFS-spectrum cancers. Twenty additional c.1000G & gt;C probands and one c.1000G & gt;A proband were identified, and available tumors showed biallelic somatic inactivation of TP53. The majority of families were of Ashkenazi Jewish descent, and the TP53 c.1000G & gt;C allele was found on a commonly inherited chromosome 17p13.1 haplotype. Transient transfection of the p.G334R allele conferred a mild defect in colony suppression assays. Lymphoblastoid cell lines from the index family in comparison with TP53 normal lines showed that although classical p53 target gene activation was maintained, a subset of p53 target genes (including PCLO, PLTP, PLXNB3, and LCN15) showed defective transactivation when treated with Nutlin-3a. Structural analysis demonstrated thermal instability of the G334R-mutant tetramer, and the G334R-mutant protein showed increased preponderance of mutant conformation. Clinical case review in comparison with classic LFS cohorts demonstrated similar rates of pediatric adrenocortical tumors and other LFS component cancers, but the latter at significantly later ages of onset. Our data show that TP53 c.1000G & gt;C;p.G334R is found predominantly in Ashkenazi Jewish individuals, causes a mild defect in p53 function, and leads to low penetrance LFS. Significance: TP53 c.1000C & gt;G;p.G334R is a pathogenic, Ashkenazi Jewish–predominant mutation associated with a familial multiple cancer syndrome in which carriers should undergo screening and preventive measures to reduce cancer risk.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 20_Supplement ( 2014-10-15), p. PR03-PR03
    Abstract: Pediatric high-grade glioma (HGG) remains a tremendous clinical challenge, with a two-year survival of less than 20%. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs) by whole-genome, whole-exome, and/or transcriptome sequencing. Somatic mutations in the bone morphogenetic protein (BMP) receptor ACVR1 occurred in 32% of DIPG, a finding exclusive to brainstem HGG. Structural variants generating fusion genes were found in 47% of pediatric HGG, with recurrent fusions involving the neurotrophin receptor genes NTRK1, 2, or 3 in 40% of infant NBS-HGGs and 5% of pediatric HGG overall. Multiple mutations targeted pathways involving histone modification or chromatin remodeling, cell cycle regulation and receptor tyrosine kinase/RAS/PI3K signaling, in both DIPG and NBS-HGGs at frequencies of greater than 39% in the entire cohort. The HGG mutation burden ranged from 2 non-silent mutations in an infant HGG to more than a million mutations in a tumor associated with germline mismatch repair deficiency. From these findings, we have established novel tumor models to better understand this devastating disease. This work provides new insight into the genetic events driving pediatric HGG tumorigenesis. This abstract is also presented as Poster B14. Citation Format: Alexander K. Diaz, Gang Wu, Barbara S. Paugh, Yongjin Li, Xiaoyan Zhu, Sherri Rankin, Chunxu Qu, Xiang Chen, Junyuan Zhang, John Easton, Michael Edmonson, Charles Lu, Panduka Nagahawatte, Erin Hedlund, Michael Rusch, Stanley Pounds, Tong Lin, Arzu Onar-Thomas, Robert Huether, Richard Kriwacki, Matthew Parker, Pankaj Gupta, Jared Becksfort, Lei Wei, Heather L. Mulder, Kristy Boggs, Bhavin Vadodaria, Donald Yergeau, Kerri Ochoa, Robert S. Fulton, Lucinda S. Fulton, Chris Jones, Alberto Broniscer, Cynthia Wetmore, Amar Gajjar, Li Ding, Elaine R. Mardis, Richard K. Wilson, James R. Downing, David W. Ellison, Jinghui Zhang, Suzanne J. Baker, For the St Jude Children's Research Hospital – Washington University Pediatric Cancer Genome Project. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. [abstract]. In: Proceedings of the AACR Special Conference on Pediatric Cancer at the Crossroads: Translating Discovery into Improved Outcomes; Nov 3-6, 2013; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2013;74(20 Suppl):Abstract nr PR03.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...