GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (6)
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2013
    In:  Cancer Research Vol. 73, No. 3_Supplement ( 2013-02-01), p. B7-B7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 3_Supplement ( 2013-02-01), p. B7-B7
    Abstract: Background. Cancer patients are up to 50 times more likely to suffer from lethal venous thromboembolism compared with non-cancer patients, but mechanisms that regulate the positive correlation between these conditions are unclear. Our primary aim was to test whether hypoxia within cells contained in the thrombus and adjacent vein leads to upregulation of hypoxia-inducible factor 1 (HIF1), which in turn stimulates the production of factors that mediate tumor growth and metastasis. Methods. Systemic or endothelial and myeloid HIF1 levels were altered (via administration of HIF1 agonist L-mimosine or via cre-Tie2 driven HIF1 deletion respectively) in established mouse models of thrombosis and breast cancer (inferior vena cava stenosis or polyoma middle T mutation driven by mouse mammary tumour virus respectively). Protein arrays were used to quantify the expression of 25 factors that regulate coagulation, thrombosis, and cancer progression. Adhesion and migration assays were used to characterise tumor and endothelial cell behaviour on thrombotic surfaces; while endothelial and tumor cell oxygen consumption rate was measured before and after thrombin treatment. Image analysis was also used to quantify intra-tumor thrombus formation. Results. Thrombus formation or upregulation of HIF1 increased the circulating expression of 10 factors that mediate tumor growth and remodelling including vascular endothelial growth factor (VEGF, 2±1 vs 1±0.2pg/ml in controls, n=6/group, P & lt;0.05), hepatocyte growth factor (HGF, 10±5 vs 7±2% in controls, n=8/group, P & lt;0.05), and stromal cell-derived factor 1 (SDF1, 14±6 vs 2±1% in controls, n=8/group, P & lt;0.05). Hypoxia (1% oxygen) tended to attenuate endothelial cell migration on fibrin (100±13 vs 64±10 cells in controls, n=6/group, P=0.05); while HIF1 deletion in Lewis lung cancer cells abolished their hypoxia-induced increase in adhesion onto fibrin (n=5/group, P & lt;0.05). Thrombin administration reduced the oxygen consumption rate of Lewis lung cancer cells (59±13 vs 79±16 pMol/min in controls, n=5/group, P & lt;0.005) but not endothelial cells (P=0.06). Deposition of fibrin in mammary tumours was reduced following endothelial and myeloid HIF1 deletion (5±1 vs 13±3% in controls, n=7/group, P & lt;0.05) and this was associated with reduced tumour size (n=14, R=0.7, P & lt;0.01). Conclusions. HIF1 regulates the progression of venous thrombosis and cancer, and could also be responsible for the positive association between these conditions. Cell and tissue-specific HIF1 is an attractive therapeutic target for treatments that aim to reduce thrombosis-associated cancer progression. Citation Format: Colin E. Evans, Cristina Branco-Price, Julia Humphries, Ashar Wadoodi, Prakash Saha, Jung-whan Kim, Mattias Belting, Alberto Smith, Randall S. Johnson. Hypoxia-inducible factor 1 mediates thrombosis-associated cancer progression. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Invasion and Metastasis; Jan 20-23, 2013; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2013;73(3 Suppl):Abstract nr B7.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2016
    In:  Cancer Research Vol. 76, No. 7_Supplement ( 2016-04-01), p. A19-A19
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 7_Supplement ( 2016-04-01), p. A19-A19
    Abstract: Thrombosis causes local blood flow restriction and tissue hypoxia, and both of these are associated with tumor cell metastasis. To better understand the regulation of thrombosis-induced metastasis, we created a model incorporating elements of both processes. Controlled induction of pulmonary microthrombosis caused an increase in expression of first hypoxia-inducible factor (HIF)1α, and subsequently HIF2α. Induction of thrombosis before the introduction of tumor cells to venous circulation had no effect on pulmonary tumor number or size; but thrombosis at the time of tumor cell seeding increased number and size of tumors in the lung. Thrombosis on the day after seeding of tumor cells caused an even greater increase in tumor number and size, and this effect persisted until even when thrombosis was induced five days after the introduction of tumor cells into the blood. Experiments on myeloid HIF1α or HIF2α knockout mice demonstrated that loss of either HIF1α or HIF2α eliminated the advantage given to pulmonary tumorigenesis by thrombotic insult. In primary human tumours, markers of thrombosis were positively correlated with expression of the 2 HIFα isoforms. These data demonstrate the importance of microthrombosis in a novel model of metastasis and the essential role of the myeloid cell-specific HIFα response in mediating this process. Citation Format: Colin E. Evans, Asis Palazon, Jingwei Sim, Petros A. Tyrakis, Par-Ola Bendahl, Mattias Belting, Helene Rundqvist, Cristina Branco, Randall S. Johnson. Pulmonary microthrombosis enhances tumorigenesis via myeloid hypoxia-inducible factors. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Metastasis; 2015 Nov 30-Dec 3; Austin, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(7 Suppl):Abstract nr A19.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 4 ( 2021-02-15), p. 1105-1118
    Abstract: In contrast to recurrence after initial diagnosis of stage I–III breast cancer [recurrent metastatic breast cancer (rMBC)], de novo metastatic breast cancer (dnMBC) represents a unique setting to elucidate metastatic drivers in the absence of treatment selection. We present the genomic landscape of dnMBC and association with overall survival (OS). Experimental Design: Targeted DNA sequencing (OncoPanel) was prospectively performed on either primary or metastatic tumors from 926 patients (212 dnMBC and 714 rMBC). Single-nucleotide variants, copy-number variations, and tumor mutational burden (TMB) in treatment-naïve dnMBC primary tumors were compared with primary tumors in patients who ultimately developed rMBC, and correlated with OS across all dnMBC. Results: When comparing primary tumors by subtype, MYB amplification was enriched in triple-negative dnMBC versus rMBC (21.1% vs. 0%, P = 0.0005, q = 0.111). Mutations in KMTD2, SETD2, and PIK3CA were more prevalent, and TP53 and BRCA1 less prevalent, in primary HR+/HER2− tumors of dnMBC versus rMBC, though not significant after multiple comparison adjustment. Alterations associated with shorter OS in dnMBC included TP53 (wild-type: 79.7 months; altered: 44.2 months; P = 0.008, q = 0.107), MYC (79.7 vs. 23.3 months; P = 0.0003, q = 0.011), and cell-cycle (122.7 vs. 54.9 months; P = 0.034, q = 0.245) pathway genes. High TMB correlated with better OS in triple-negative dnMBC (P = 0.041). Conclusions: Genomic differences between treatment-naïve dnMBC and primary tumors of patients who developed rMBC may provide insight into mechanisms underlying metastatic potential and differential therapeutic sensitivity in dnMBC. Alterations associated with poor OS in dnMBC highlight the need for novel approaches to overcome potential intrinsic resistance to current treatments.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 4_Supplement ( 2022-02-15), p. PD6-03-PD6-03
    Abstract: Metastatic breast cancer (MBC) remains incurable due to inevitable development of therapeutic resistance. Although tumor cell intrinsic mechanisms of resistance in MBC are beginning to be elucidated by bulk sequencing studies, the roles of the tumor microenvironment and intratumor heterogeneity in therapeutic resistance remain underexplored due to both technological barriers and limited availability of samples. To comprehensively capture these characteristics we have adapted a research biopsy protocol to collect tissue for an array of single-cell and spatio-molecular assays whose performance we have optimized for MBC, including single-cell and single-nucleus RNA sequencing, Slide-Seq, Multiplexed Error-Robust FISH (MERFISH), Expansion Sequencing (ExSEQ), Co-detection by Indexing (CODEX) and Multiplexed Ion Beam Imaging (MIBI). To date, we have successfully performed single-cell or single-nucleus RNAseq in 67 MBC biopsies and generated detailed accompanying clinical annotations for each. These samples provide a representation of the clinicopathological diversity of MBC including different breast cancer subtypes (44 HR+/HER2-, 3 HR-/HER2+, 3 HR+/HER2+, 16 TNBC, 1 unknown), common anatomic sites of metastasis (37 liver, 9 axilla, 7 breast, 5 bone, 3 chest wall, 3 neck, 1 brain, 1 lung, 1 skin), metastatic presentations (53 recurrent, 14 de novo) and histologic subtypes in the breast (45 IDC, 7 ILC, 6 mixed, 3 DCIS, 1 mucinous, 5 unknown/NA). Following optimization, both single-cell and single-nucleus RNA seq perform well in these MBC biopsies recovering all expected cell types including the malignant, stromal (e.g. fibroblasts, endothelial cells), myeloid (e.g. monocytes, macrophages) and lymphoid compartments (e.g. T cells, B cells, NK cells) as well as relevant oncogenic programs (e.g. cell cycle programs in all compartments; EMT-like and ER signaling programs in the malignant compartment, immune checkpoint programs in the lymphoid compartment; and fibroblast activation and vascular homeostasis programs in the stromal compartment). In addition to differences between the two techniques, these data demonstrate substantial intratumor heterogeneity in cell type composition. For example in liver biopsies the average number of cells per sample compartment by single nucleus RNA-seq was 6745 malignant (56%, SD 4216), 4637 stromal (41%, SD 3727), 1196 lymphoid (8%, SD 1617) and 874 myeloid (6%, SD 852); in breast biopsies the average number of cells per compartment by single nucleus RNA-seq was 6421 malignant (70%, SD 3497), 1628 stromal (24%, SD 117), 333 lymphoid (4%, SD 170) and 213 myeloid (3%, SD 117). Additionally, we find both inter- and intra-tumor heterogeneity in expression patterns and programs including, for example, expression of ER, PR and HER2 within clinical receptor subtypes (log normalized counts for ER expression in tumor cells by single cell RNA-seq: HR+/HER2- 0.921 (SD 0.714); HR+/HER2+ 0.768 (SD 0.624); HR-/HER2+ 0.018 (SD 0.122); and HR-/HER2- 0.005 (SD 0.066). For a subset of 13 biopsies we are also completing the spatiomolecular characterization methods on serial sections of a single adjacent biopsy. This unique experimental setup was designed to enable efficient comparison and integration of these assays. In spite of differences between experimental techniques and readouts, cell typing can be approached by annotation transfer from matching single cell or single nucleus RNAseq data, enabling exploratory analyses including evaluation of spatial phenotypes and cell type colocalization. Overall, these single cell and spatial data afford a comprehensive atlas including cell types, cell states/programs, cell interactions and spatial organization in MBC lesions. Future analyses will include serial biopsies over time and integration of clinicopathologic data including therapeutic response and resistance. Citation Format: Daniel L Abravanel, Johanna Klughammer, Timothy Blosser, Yury Goltsev, Sizun Jiang, Yunjao Bai, Evan Murray, Shahar Alon, Yi Cui, Daniel R Goodwin, Anubhav Sinha, Ofir Cohen, Michal Slyper, Orr Ashenberg, Danielle Dionne, Judit Jané-Valbuena, Caroline BM Porter, Asa Segerstolpe, Julia Waldman, Sébastien Vigneau, Karla Helvie, Allison Frangieh, Laura DelloStritto, Miraj Patel, Jingyi We, Kathleen Pfaff, Nicole Cullen, Ana Lako, Madison Turner, Isaac Wakiro, Sara Napolitano, Abhay Kanodia, Rebecca Ortiz, Colin MacKichan, Stephanie Inga, Judy Chen, Aaron R Thorner, Asaf Rotem, Scott Rodig, Fei Chen, Edward S Boyden, Garry P Nolan, Xiaowei Zhuang, Orit Rozenblatt-Rosen, Bruce E Johnson, Aviv Regev, Nikhil Wagle. Spatio-molecular dissection of the breast cancer metastatic microenvironment [abstract] . In: Proceedings of the 2021 San Antonio Breast Cancer Symposium; 2021 Dec 7-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2022;82(4 Suppl):Abstract nr PD6-03.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 2168-2168
    Abstract: Diffuse glioma is characterized by a poor prognosis and a universal resistance to therapy, though the evolutionary processes behind this resistance remain unclear. The Glioma Longitudinal Analysis (GLASS) Consortium has previously demonstrated that therapy-induced selective pressures shape the genetic evolution of glioma in a stochastic manner. However, single-cell studies have revealed that malignant glioma cells are highly plastic and transition their cell state in response to diverse challenges, including changes in the microenvironment and the administration of standard-of-care therapy. To interrogate the factors driving therapy resistance in diffuse glioma, we collected and analyzed RNA- and/or DNA-sequencing data from temporally separated tumor pairs of over 300 adult patients with IDH-wild-type or IDH-mutant glioma. In a subset of these tumor pairs, we additionally performed multiplex immunofluorescence to capture the spatial relationship between tumor cells and their microenvironment. Recurrent tumors exhibited diverse changes that were attributable to changes in histological features, somatic alterations, and microenvironment interactions. IDH-wild-type tumors overall were more invasive at recurrence and exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. In contrast, recurrent IDH-mutant tumors exhibited a significant increase in proliferative expression programs that correlated with discrete genetic changes. Hypermutation and acquired CDKN2A homozygous deletions associated with an increase in proliferating stem-like malignant cells at recurrence in both glioma subtypes, reflecting active tumor expansion. A transition to the mesenchymal phenotype was associated with the presence of a specific myeloid cell state defined by unique ligand-receptor interactions with malignant cells, providing opportunities to target this transition through therapy. Collectively, our results uncover recurrence-associated changes in genetics and the microenvironment that can be targeted to shape disease progression following initial diagnosis. Citation Format: Frederick S. Varn, Kevin C. Johnson, Jan Martinek, Jason T. Huse, MacLean P. Nasrallah, Pieter Wesseling, Lee A. Cooper, Tathiane M. Malta, Taylor E. Wade, Thais S. Sabedot, Daniel J. Brat, Peter V. Gould, Adelheid Wöehrer, Kenneth Aldape, Azzam Ismail, Floris P. Barthel, Hoon Kim, Emre Kocakavuk, Nazia Ahmed, Kieron White, Santhosh Sivajothi, Indrani Datta, Jill S. Barnholtz-Sloan, Spyridon Bakas, Fulvio D'Angelo, Hui K. Gan, Luciano Garofano, Mustafa Khasraw, Simona Migliozzi, D. Ryan Ormond, Sun Ha Paek, Erwin G. Van Meir, Annemiek M. Walenkamp, Colin Watts, Michael Weller, Tobias Weiss, Karolina Palucka, Lucy F. Stead, Laila M. Poisson, Houtan Noushmehr, Antonio Iavarone, Roel G. Verhaak, The GLASS Consortium. Longitudinal analysis of diffuse glioma reveals cell state dynamics at recurrence associated with changes in genetics and the microenvironment [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2168.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 7, No. 1 ( 2017-01-01), p. 54-71
    Abstract: Mechanisms controlling the emergence of lethal neuroendocrine prostate cancer (NEPC), especially those that are consequences of treatment-induced suppression of the androgen receptor (AR), remain elusive. Using a unique model of AR pathway inhibitor–resistant prostate cancer, we identified AR-dependent control of the neural transcription factor BRN2 (encoded by POU3F2) as a major driver of NEPC and aggressive tumor growth, both in vitro and in vivo. Mechanistic studies showed that AR directly suppresses BRN2 transcription, which is required for NEPC, and BRN2-dependent regulation of the NEPC marker SOX2. Underscoring its inverse correlation with classic AR activity in clinical samples, BRN2 expression was highest in NEPC tumors and was significantly increased in castration-resistant prostate cancer compared with adenocarcinoma, especially in patients with low serum PSA. These data reveal a novel mechanism of AR-dependent control of NEPC and suggest that targeting BRN2 is a strategy to treat or prevent neuroendocrine differentiation in prostate tumors. Significance: Understanding the contribution of the AR to the emergence of highly lethal, drug-resistant NEPC is critical for better implementation of current standard-of-care therapies and novel drug design. Our first-in-field data underscore the consequences of potent AR inhibition in prostate tumors, revealing a novel mechanism of AR-dependent control of neuroendocrine differentiation, and uncover BRN2 as a potential therapeutic target to prevent emergence of NEPC. Cancer Discov; 7(1); 54–71. ©2016 AACR. This article is highlighted in the In This Issue feature, p. 1
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...