GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (19)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 19_Supplement ( 2020-10-01), p. PR03-PR03
    Abstract: The purpose of this study was to determine the role of BAP1 levels in cutaneous melanoma (CM). BAP1 is a tumor suppressor in which loss of heterozygosity (LOH) from mutation and copy number alteration is well described in germline and somatic cancers. Although BAP1 genomic alterations in CM are extremely rare (2% of 665 samples from 5 datasets), marked variability in BAP1 expression is observed in CM. We show that low nuclear BAP1 levels portend a significantly worse clinical outcome in stage III CM (n=37, log rank p ≤0.01 for both overall survival and progression-free survival). Gene Set Enrichment Analysis (GSEA) revealed low BAP1 expression to be most highly ranked with an increased epithelial–mesenchymal transition (EMT) gene expression profile in CM tumors (n=379, FDR q = 1.34E-26) and cell lines (n=53, FDR q = 2.86E-116). We identify the expression of ZEB1, a master regulator of EMT, to be significantly associated with low BAP1 expression in CM tumors and cell lines (p= 1.5E-04 and 3.3E-05, respectively). Analysis of the BAP1 promoter indicates three canonical ZEB1 binding sites. Functional experiments show ZEB1 to bind to the BAP1 promoter, and luciferase activity assays indicate that ZEB1 acts as a transcriptional suppressor of BAP1 expression with differential utilization of the promoter binding sites. Targeted reduction of endogenous ZEB1 caused increased BAP1 levels, while targeted reduction of BAP1 did not modulate ZEB1 levels, consistent with ZEB1 having a suppressive effect on BAP1. Phenotypically, targeted reduction of BAP1 in CM cells resulted in a switch from a more differentiated, melanocytic state, to a less differentiated, more migratory and invasive phenotype. Extinguishing melanocyte-specific BAP1 in mice with a BRAF V600E mutant genetic background resulted in the emergence of primary melanoma tumors, with a marked EMT gene expression profile, and resultant metastases. Given the phenotypic changes associated with BAP1 levels in our mouse and human studies, we then tested the effect of modulating BAP1 on BRAF targeted therapy. Exogenous expression of BAP1 sensitized BRAF inhibitor (vemurafenib)-resistant melanoma cells, while the targeted reduction of BAP1 desensitized BRAF inhibitor-sensitive melanoma cells. BRAF mutant/BAP1 loss mice failed to exhibit a marked response to vemurafenib treatment compared to control mice. These data implicate regulation of BAP1 to be a major mechanism that characterizes a highly malignant and treatment-resistant subset of tumors. Our study indicates that nongenomic reduction in BAP1 through ZEB1 transcriptional modulation may be a key factor in aggressive CM. This abstract is also being presented as Poster A30. Citation Format: Haifeng Zhu, Junna Oba, Xiaoxing Yu, Caitlin A. Creasy, Marie-Andrée Forget, Fernando Carapeto, Cara L. Haymaker, Chang-Jiun Wu, Tatiana V. Karpinets, Wei-Lien Wang, Michael T. Tetzlaff, Alexander J. Lazar, Gordon B. Mills, Amanda R. Moore, Yu Chen, Jianhua Zhang, Jeffrey E. Gershenwald, Jennifer A. Wargo, Chantale Bernatchez, Patrick Hwu, P. Andrew Futreal, Scott E. Woodman. Nongenomic BAP1 aberrancy drives highly aggressive cutaneous melanoma phenotype [abstract]. In: Proceedings of the AACR Special Conference on Melanoma: From Biology to Target; 2019 Jan 15-18; Houston, TX. Philadelphia (PA): AACR; Cancer Res 2020;80(19 Suppl):Abstract nr PR03.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 20 ( 2022-10-17), p. 3845-3857
    Abstract: Lenvatinib is an inhibitor of multiple receptor tyrosine kinases that was recently authorized for first-line treatment of hepatocellular carcinoma (HCC). However, the clinical benefits derived from lenvatinib are limited, highlighting the urgent need to understand mechanisms of resistance. We report here that HCC cells develop resistance to lenvatinib by activating EGFR and stimulating the EGFR–STAT3–ABCB1 axis. Lenvatinib resistance was accompanied by aberrant cholesterol metabolism and lipid raft activation. ABCB1 was activated by EGFR in a lipid raft–dependent manner, which significantly enhanced the exocytosis of lenvatinib to mediate resistance. Furthermore, clinical specimens of HCC showed a correlation between the activation of the EGFR–STAT3–ABCB1 pathway and lenvatinib response. Erlotinib, an EGFR inhibitor that has also been shown to inhibit ABCB1, suppressed lenvatinib exocytosis, and combined treatment with lenvatinib and erlotinib demonstrated a significant synergistic effect on HCC both in vitro and in vivo. Taken together, these findings characterize a mechanism of resistance to a first-line treatment for HCC and offer a practical means to circumvent resistance and treat the disease. Significance: HCC cells acquire resistance to lenvatinib by activating the EGFR–STAT3–ABCB1 pathway, identifying combined treatment with erlotinib as a strategy to overcome acquired resistance and improve the clinical benefit of lenvatinib.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 18 ( 2022-09-16), p. 3405-3405
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 7 ( 2017-04-01), p. 1809-1819
    Abstract: Purpose: Brain angiogenesis inhibitor (BAI1) facilitates phagocytosis and bacterial pathogen clearance by macrophages; however, its role in viral infections is unknown. Here, we examined the role of BAI1, and its N-terminal cleavage fragment (Vstat120) in antiviral macrophage responses to oncolytic herpes simplex virus (oHSV). Experimental Design: Changes in infiltration and activation of monocytic and microglial cells after treatment of glioma-bearing mice brains with a control (rHSVQ1) or Vstat120-expressing (RAMBO) oHSV was analyzed using flow cytometry. Co-culture of infected glioma cells with macrophages or microglia was used to examine antiviral signaling. Cytokine array gene expression and Ingenuity Pathway Analysis (IPA) helped evaluate changes in macrophage signaling in response to viral infection. TNFα-blocking antibodies and macrophages derived from Bai1−/− mice were used. Results: RAMBO treatment of mice reduced recruitment and activation of macrophages/microglia in mice with brain tumors, and showed increased virus replication compared with rHSVQ1. Cytokine gene expression array revealed that RAMBO significantly altered the macrophage inflammatory response to infected glioma cells via altered secretion of TNFα. Furthermore, we showed that BAI1 mediated macrophage TNFα induction in response to oHSV therapy. Intracranial inoculation of wild-type/RAMBO virus in Bai1−/− or wild-type non–tumor-bearing mice revealed the safety of this approach. Conclusions: We have uncovered a new role for BAI1 in facilitating macrophage anti-viral responses. We show that arming oHSV with antiangiogenic Vstat120 also shields them from inflammatory macrophage antiviral response, without reducing safety. Clin Cancer Res; 23(7); 1809–19. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 6513-6513
    Abstract: Introduction: An improved understanding of early lung carcinogenesis may facilitate development of novel diagnostic, screening, and prevention strategies to decrease lung cancer mortality. We have previously led a series of studies on the molecular and immune landscape of lung adenocarcinoma (LUAD) precursors. However, resected human specimens only provide molecular snapshots. Here, we sought to establish and characterize human-relevant murine lung precancer models to depict molecular evolution during early lung carcinogenesis and to provide novel insights for lung cancer interception. Methods: We have established 3 genetically engineered mouse models (GEMMs) (K: KrasLSL-G12D/+, KP: KrasLSL-G12D/+/Trp53R172H/+, KL: KrasLSL-G12D/+/Lkb1fl/fl) and 2 carcinogen-induced models (CITMs) (UWT: Urethane in wild type mice, URG: Urethane in Rag2−/− mice). Lung tissues were serially collected at multiple time points after induction and subjected to whole exome sequencing (WES), single cell RNA sequencing (scRNA-seq), spatial transcriptomics (Visium), and imaging mass cytometry (IMC). Results: Pathological review of specimens from 252 mice revealed normal lung, precancers and LUAD at different timepoints mirroring the evolution of human LUAD. Overall, the tumor burden was significantly higher in GEMMs than CITMs (p & lt;0.05). Tumor mutation burden progressively increased with progression from precancers to LUADs across all models. scRNA-seq demonstrated a progressive decrease of CD4+ T cell, CD8+ T cell, NK cell, and B cell infiltration in all models except the B/T cell-deficient WRG model; and a progressive increase of neutrophils (in KL model) and macrophages (in K, KP, UWT and URG models) along with progression of precancers. These findings were confirmed by spatial Visium and IMC profiling. Infiltration of T cells, B cells and NK cells inside tumors was not different between GEMMs (K, KP, KL) and CITMs (UWT). However, UWT showed significantly higher density of immune cells at the peritumor regions (P & lt;0.05). Compared to the immune-competent UWT model, the B/T-cell deficient URG model showed similar progression and tumor burden at early phases, but rapid progression and larger tumor burden in the later phases. URG had no mature B/T cells but significantly higher NK cell infiltration than UWT (p & lt;0.05). Conclusion: We have established 5 murine carcinogen-dependent and -independent precancer models, morphologically resembling human LUAD and its precursors. Although progressive immunosuppression along with progression of lung precancers is universal across all models, the evolution patterns and the molecular/immune features underlying immunosuppression vary in different models, particularly between CITMs and GEMMs. These models may be valuable assets for studying early lung carcinogenesis and lung cancer interception. Citation Format: Bo Zhu, Jian-Rong Li, Hong Chen, Pingjun Chen, Junya Fujimoto, Yanhua Tian, Muhammad Aminu, Chenyang Li, Lingzhi Hong, Alexandre Reuben, Edwin Roger Parra Cuentas, Ou Shi, Monique Nilsson, Alissa Poteete, Shawna Hubert, Khaja Khan, Wei Lu, Daniel Kraushaar, Xingzhi Song, Jianhua Zhang, Don Gibbons, Luisa Solis Soto, Ignacio Wistuba, Jia Wu, John Heymach, Chao Cheng, Jianjun Zhang. Single cell and spatial profiling reveal molecular and immune evolution from precancers to invasive lung adenocarcinomas in genetic and carcinogen-induced mouse models. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 6513.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2010
    In:  Cancer Research Vol. 70, No. 8_Supplement ( 2010-04-15), p. 4669-4669
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 8_Supplement ( 2010-04-15), p. 4669-4669
    Abstract: There have been a lot studies focusing on EGFR mutation analysis in the patients of lung cancer especially in the patients with adenocarcinoma, for EGFR mutation has shown helpful in patient prognosis and therapeutic selection. Erlotinib and Gefitinib are playing increasing role in late stage adenocarcinoma of lung although it has not been listed as a first line treatment for advanced patients of Asian ethnic yet. However, the fact of a better respond rate to Erlotinib and Gefitinib and longer survival related to the mutant status of EGFR gene among Asian patients is encouraging the use for routine test of this gene in clinical service for lung cancer patients. Ninety two Chinese cancer patients were included into the study, from which 60 were lung cancer. The other cases were 11 supraclavicular lymph node biopsies and 21 tumor masses of different sites with differentiation diagnosis needed. EGFR mutation analysis was performed in DNA extracted from tumor tissue or biopsy samples. Overall mutation rate of EGFR was 42.39% (39/92) in whole patient group. The mutation rate in lung cancer was 46.67% (28/60) whereas it turned to 58.14% (25/43) when only looking at adenocarcinoma (56.10%, 23/41) and adenosquamous carcinoma (100%, 2/2). No mutation was found in squamous carcinoma, large cell carcinoma and poorly differentiated carcinoma. EGFR mutation analysis in the samples from Endobronchila Ultrasound-Guided Transbronchial Needle Aspiration (EBUS-TBNA) for mediastinal masses revealed an EGFR mutation rate of 42.86% (3/7), mimicking the mutation rate of lung cancer in our study. Forty eight percent of the EGFR mutation was located in exon 19 and 36% of the mutation in exon 21. Mutation of exon 19 seemed to be lower in the patient group older (35.71%, 5/14) than 58 year old (median age) than that in the patient group younger than 58 year old (58.82%, 10/17) (P=0.0581). In opposition, mutation rate of exon 21 appeared higher in the older group (64.29%, 9/14) than that in the younger patient group (23.53%, 4/17) (P=0.0800). The mutations in male patients were mainly located in exon 19 (71.43%, 10/14). And the mutation rate of exon 19 and 21 in female patients showed very close (43.47%, 10/23 for exon 19 and 47.83%, 11/23 for exon 21). Mutation rate of exon 20 was generally low but showed a higher rate in younger and female patients (17.65% and 13.04%). Mutation of supraclavicular lymph node was quite high (36.37%, 4/11) while mutation rate from variant site was low (20.00%, 4/20). One adenocarcinoma located in uterus muscle layer was demonstrated to possess an exon 19 mutation. All follow up analysis is in process. In conclusion, EGFR mutation analysis is a useful tool in defining patients suitable for EGFR TKI treatment as well as helpful in differentiation diagnosis in metastasis lesion. Mutation analysis in the samples derived from EBUS-TBNA is especially of important with clinical value. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 4669.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 9, No. 10 ( 2019-10-01), p. 1422-1437
    Abstract: Blockade of PD-L1 expression on tumor cells via anti–PD-L1 monoclonal antibody (mAb) has shown great promise for successful cancer treatment by overcoming T-cell exhaustion; however, the function of PD-L1 on natural killer (NK) cells and the effects of anti–PD-L1 mAb on PD-L1+ NK cells remain unknown. Moreover, patients with PD-L1− tumors can respond favorably to anti–PD-L1 mAb therapy for unclear reasons. Here, we show that some tumors can induce PD-L1 on NK cells via AKT signaling, resulting in enhanced NK-cell function and preventing cell exhaustion. Anti–PD-L1 mAb directly acts on PD-L1+ NK cells against PD-L1− tumors via a p38 pathway. Combination therapy with anti–PD-L1 mAb and NK cell–activating cytokines significantly improves the therapeutic efficacy of human NK cells against PD-L1− human leukemia when compared with monotherapy. Our discovery of a PD-1–independent mechanism of antitumor efficacy via the activation of PD-L1+ NK cells with anti–PD-L1 mAb offers new insights into NK-cell activation and provides a potential explanation as to why some patients lacking PD-L1 expression on tumor cells still respond to anti–PD-L1 mAb therapy. Significance: Targeting PD-L1 expressed on PD-L1+ tumors with anti–PD-L1 mAb successfully overcomes T-cell exhaustion to control cancer, yet patients with PD-L1− tumors can respond to anti–PD-L1 mAb. Here, we show that anti–PD-L1 mAb activates PD-L1+ NK cells to control growth of PD-L1− tumors in vivo, and does so independent of PD-1. This article is highlighted in the In This Issue feature, p. 1325
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 1 ( 2022-01-01), p. 201-214
    Abstract: mAbs blocking immune checkpoints have emerged as important cancer therapeutics, as exemplified by systemic administration of the IgG1 anti-CD47 mAb that blocks the “don't eat me” pathway. However, this strategy is associated with severe toxicity. Experimental Design: To improve therapeutic efficacy while reducing toxicities for ovarian cancer, we engineered an oncolytic herpesvirus (oHSV) to express a full-length, soluble anti-CD47 mAb with a human IgG1 scaffold (OV-αCD47-G1) or IgG4 scaffold (OV-αCD47-G4). Results: Both IgG1 and IgG4 anti-CD47 mAbs secreted by oHSV-infected tumor cells blocked the CD47–SIRPα signal pathway, enhancing macrophage phagocytosis against ovarian tumor cells. OV-αCD47-G1, but not OV-αCD47-G4, activated human NK-cell cytotoxicity and macrophage phagocytosis by binding to the Fc receptors of these cells. In vivo, these multifaceted functions of OV-αCD47-G1 improved mouse survival in xenograft and immunocompetent mouse models of ovarian cancer when compared with OV-αCD47-G4 and a parental oHSV. The murine counterpart of OV-αCD47-G1, OV-αmCD47-G2b, also enhanced mouse NK-cell cytotoxicity and macrophage phagocytosis and prolonged survival of mice bearing ovarian tumors compared with OV-αmCD47-G3. OV-αmCD47-G2b was also superior to αmCD47-G2b and showed a significantly better effect when combined with an antibody against PD-L1 that was upregulated by oHSV infection. Conclusions: Our data demonstrate that an oHSV encoding a full-length human IgG1 anti-CD47 mAb, when used as a single agent or combined with another agent, is a promising approach for improving ovarian cancer treatment via enhancing innate immunity, as well as performing its known oncolytic function and modulation of immune cells.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 4760-4760
    Abstract: Despite advancements in treatment, prostate cancer (PCa) remains the second leading cause of death among men. Neuroendocrine prostate cancer (NEPC) represents one of the most lethal forms of PCa and lacks life-prolonging treatment. Here we identified histone lysine demethylase KDM4A as a driver in NEPC progression and an effective therapeutic target. KDM4A mRNA and protein are overexpressed in human and mouse NEPC compared to adenocarcinoma. Knockdown or knockout of KDM4A in NEPC cell lines suppressed cancer cell growth in vitro and in vivo. Importantly, the inactivation of Kdm4a in a genetically engineered mouse model of prostate cancer reduces tumor burden, reduces the incidence of NEPC, and prolongs overall survival. Mechanistically, KDM4A directly regulates the transcription of MYC, which is hyper-activated in human and mouse NEPC. Furthermore, a potent pan-KDM4 inhibitor QC6352 significantly reduces NEPC cell growth in vitro and in vivo. Taken together, we demonstrate that KDM4A promotes NEPC progression through regulation of MYC expression and targeting KDM4A can be an effective therapeutic strategy for NEPC. Citation Format: Celia Sze Ling Mak, Ming Zhu, Xin Liang, Feng Wang, Anh G. Hoang, Xinzhi Song, Peter Shepherd, Derek Liang, Jessica Suh, Jiwon Park, Miao Zhang, Eric Metzger, Roland Schule, Abhinav K. Jain, Ellen Karasik, Barbara A. Foster, Min Gyu Lee, Paul Corn, Christopher J. Logothetis, Ana Aparicio, Nora Navone, Patricia Troncoso, Jianhua Zhang, Sue-Hwa Lin, Guocan Wang. KDM4A promotes NEPC progression through regulation of MYC expression. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 4760.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2013
    In:  Clinical Cancer Research Vol. 19, No. 6 ( 2013-03-15), p. 1400-1410
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 19, No. 6 ( 2013-03-15), p. 1400-1410
    Abstract: Purpose: Prostate cancer is the second leading cause of cancer deaths among men in Western counties, which has also occurred in Chinese male with markedly increasing incidence in recent years. Although the mechanism underlying its progression still remains unclear, epigenetic modifications are important ethological parameters. The purpose of this study is to determine the methylation status and function of hypermethylatioted in cancer 1 (HIC1) in prostate cancer progression. Experimental Design: The methylation status of HIC1 promoter was assayed in cell lines, tissues, and plasma of patients with prostate cancer by using methylation-specific PCR and bisulfate sequencing PCR. The ability of HIC1 to regulate proliferation, migration, and invasion was assessed by MTT, scratch-healing assay, and reconstituted extracellular matrices in porous culture chambers. Tumorigenesis, metastases, and bone destruction were analyzed in mice bearing prostate cancer cells restoring HIC1 by using Xenogen IVIS with radiographic system and small-animal positron emission tomography computed tomographic images. Microarrays were searched for genes that had correlated expression with HIC1 mRNA. Reporter gene assays were used to determine whether HIC1 affected the expression of CXCR7, and chromatin immunoprecipitation was used to determine whether HIC1 bound to CXCR7 promoters. All P values were determined using 2-sided tests. Results: The methylation status of 11 CpG sites within HIC1 promoter was abundantly methylated in cell lines, tissues, and plasma of patients with prostate cancer compared with those of respective normal controls. Restoring HIC1 expression in prostate cancer cells markedly inhibited proliferation, migration, and invasion and induced the apoptosis in these cells. Moreover, mice bearing prostate cancer–restoring HIC1 cells had a marked effect on reducing tumor growth, multiple tissue metastases, and bone destruction. Notably, we also identified that the chemokine receptor CXCR7 is a direct downstream target gene of HIC1. Finally, we showed that CXCR7 promoter in prostate cancer cells is negatively regulated by HIC1, which may be responsible for prostate cancer progression. Conclusions: Our data show for the first time that hypermethylation of HIC1 promoter results in loss of its repressive function, responsible for prostate cancer progression and invasion. These findings suggest that therapies targeting epigenetic events regulating HIC1 expression may provide a more effective strategy for prostate cancer treatment. Clin Cancer Res; 19(6); 1400–10. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...