GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (20)
  • 1
    In: Cancer Research Communications, American Association for Cancer Research (AACR), Vol. 2, No. 4 ( 2022-04-08), p. 211-219
    Abstract: Genome-wide association studies (GWAS) have identified more than 200 susceptibility loci for breast cancer, but these variants explain less than a fifth of the disease risk. Although gene–environment interactions have been proposed to account for some of the remaining heritability, few studies have empirically assessed this. We obtained genotype and risk factor data from 46,060 cases and 47,929 controls of European ancestry from population-based studies within the Breast Cancer Association Consortium (BCAC). We built gene expression prediction models for 4,864 genes with a significant (P & lt; 0.01) heritable component using the transcriptome and genotype data from the Genotype-Tissue Expression (GTEx) project. We leveraged predicted gene expression information to investigate the interactions between gene-centric genetic variation and 14 established risk factors in association with breast cancer risk, using a mixed-effects score test. After adjusting for number of tests using Bonferroni correction, no interaction remained statistically significant. The strongest interaction observed was between the predicted expression of the C13orf45 gene and age at first full-term pregnancy (PGXE = 4.44 × 10−6). In this transcriptome-informed genome-wide gene–environment interaction study of breast cancer, we found no strong support for the role of gene expression in modifying the associations between established risk factors and breast cancer risk. Our study suggests a limited role of gene–environment interactions in breast cancer risk.
    Type of Medium: Online Resource
    ISSN: 2767-9764
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 3098144-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 4_Supplement ( 2021-02-15), p. PS7-04-PS7-04
    Abstract: BRA-STRAP is an Australia-wide study of breast cancer predisposition that brings together gene-panel data from 30,000 adult Australian women of all ages, across the breast cancer risk spectrum, with and without a diagnosis of breast cancer. The “BRA-STRAP panel” includes 24 genes* that are involved in, or putatively associated with, predisposition to breast and/or ovarian cancer. Despite insufficient evidence for clinical translation for some of these genes, all 24 are commonly included on panel tests for breast cancer predisposition. We present findings from the population-based case-control sub-study of BRA-STRAP, which involved 1451 women diagnosed with breast cancer and 857 age-matched controls participating in the Australian Breast Cancer Family Registry (ABCFR), and 6101 healthy, elderly Australian women enrolled in the ASPREE study. These analyses focus on rare genetic variants predicted to lead to loss of function and/or classified as pathogenic/likely pathogenic (P/LP) in ClinVar. Odds ratios (ORs) for their associations with breast cancer were estimated by aggregating genetic variants for each gene. For the women diagnosed with breast cancer, the median age at diagnosis (inter-quartile range, IQR) was 40.0 (14.0) years and the overall frequency of P/LP variant carriers across all genes was 156/1451 (10.8%). The median age (IQR) of the ABCFR and ASPREE controls were 39.4 (14.9) and 73.9 (5.8) years, respectively. The frequencies of P/LP variant carriers were 33/857 (3.9%) and 268/6101 (4.4%) in the ABCFR and ASPREE controls, respectively. We combined both control datasets and, after adjusting for age and other potential confounders, the ORs associated with P/LP variants in BRCA1 and BRCA2 were 4.1 [95% confidence interval (CI): 1.8-10.2] and 2.9 [95% CI: 1.5-6] , respectively. We also found that the OR for P/LP variants in ATM was 4.0 [95% CI: 1.5-10.4] and the OR for P/LP variants in PALB2 was 2.2 [95% CI: 0.75-5.7] although this did not reach statistical significance. These results contribute to international efforts to refine the breast cancer risk estimates for genetic variants identified from population-based screening of unselected women using genes that are included on panel tests and thought to be potentially breast cancer predisposition genes.The case-control-family design of the ABCFR will also allow us to estimate the age specific cumulative risk (penetrance) of these genetic variants, which is important for genetic counselling and the clinical management of carrier families. *ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, FANCM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, NF1, PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, RECQL, STK11 and TP53 Citation Format: Tu Nguyen-Dumont, James Dowty, Katherine Tucker, Judy Kirk, Paul James, Alison Trainer, Ingrid Winship, Nicholas Pachter, Nicola Poplawski, Scott Grist, Daniel J Park, Anne-Laure Renault, Fleur Hammet, Maryam Mahmoodi, Helen Tsimiklis, Jason A Steen, Derrick Theys, Amanda Rewse, Amanda Willis, April Morrow, Catherine Speechly, Rebecca Harris, Moeen Riaz, Robert Sebra, Eric Schadt, Paul Lacaze, John McNeil, John L Hopper, Melissa C Southey. Population-based estimates of breast cancer risk for germline pathogenic variants identified by gene-panel testing: An Australian perspective [abstract]. In: Proceedings of the 2020 San Antonio Breast Cancer Virtual Symposium; 2020 Dec 8-11; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2021;81(4 Suppl):Abstract nr PS7-04.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 6, No. 7 ( 2007-07-01), p. 2012-2021
    Abstract: With the development of targeted therapeutics, especially for small-molecule inhibitors, it is important to understand whether the observed in vivo efficacy correlates with the modulation of desired/intended target in vivo. We have developed a small-molecule inhibitor of all three vascular endothelial growth factor (VEGF) receptors (VEGFR), platelet-derived growth factor receptor, and c-Kit tyrosine kinases, pazopanib (GW786034), which selectively inhibits VEGF-induced endothelial cell proliferation. It has good oral exposure and inhibits angiogenesis and tumor growth in mice. Because bolus administration of the compound results in large differences in Cmax and Ctrough, we investigated the effect of continuous infusion of a VEGFR inhibitor on tumor growth and angiogenesis. GW771806, which has similar enzyme and cellular profiles to GW786034, was used for these studies due to higher solubility requirements for infusion studies. Comparing the pharmacokinetics by two different routes of administration (bolus p.o. dosing and continuous infusion), we showed that the antitumor and antiangiogenic activity of VEGFR inhibitors is dependent on steady-state concentration of the compound above a threshold. The steady-state concentration required for these effects is consistent with the concentration required for the inhibition of VEGF-induced VEGFR2 phosphorylation in mouse lungs. Furthermore, the steady-state concentration of pazopanib determined from preclinical activity showed a strong correlation with the pharmacodynamic effects and antitumor activity in the phase I clinical trial. [Mol Cancer Ther 2007;6(7):2012–21]
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2007
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 23, No. 12 ( 2014-12-01), p. 2971-2976
    Abstract: Background: Calcium intake may reduce risk of colorectal cancer, but the mechanisms remain unclear. Studies of interaction between calcium intake and SNPs in calcium-related pathways have yielded inconsistent results. Methods: To identify gene–calcium interactions, we tested interactions between approximately 2.7 million SNPs across the genome with self-reported calcium intake (from dietary or supplemental sources) in 9,006 colorectal cancer cases and 9,503 controls of European ancestry. To test for multiplicative interactions, we used multivariable logistic regression and defined statistical significance using the conventional genome-wide α = 5E−08. Results: After accounting for multiple comparisons, there were no statistically significant SNP interactions with total, dietary, or supplemental calcium intake. Conclusions: We found no evidence of SNP interactions with calcium intake for colorectal cancer risk in a large population of 18,509 individuals. Impact: These results suggest that in genome-wide analysis common genetic variants do not strongly modify the association between calcium intake and colorectal cancer in European populations. Cancer Epidemiol Biomarkers Prev; 23(12); 2971–6. ©2014 AACR.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 25, No. 2 ( 2016-02-01), p. 359-365
    Abstract: Background: The extent to which clinical breast cancer risk prediction models can be improved by including information on known susceptibility SNPs is not known. Methods: Using 750 cases and 405 controls from the population-based Australian Breast Cancer Family Registry who were younger than 50 years at diagnosis and recruitment, respectively, Caucasian and not BRCA1 or BRCA2 mutation carriers, we derived absolute 5-year risks of breast cancer using the BOADICEA, BRCAPRO, BCRAT, and IBIS risk prediction models and combined these with a risk score based on 77 independent risk-associated SNPs. We used logistic regression to estimate the OR per adjusted SD for log-transformed age-adjusted 5-year risks. Discrimination was assessed by the area under the receiver operating characteristic curve (AUC). Calibration was assessed using the Hosmer–Lemeshow goodness-of-fit test. We also constructed reclassification tables and calculated the net reclassification improvement. Results: The ORs for BOADICEA, BRCAPRO, BCRAT, and IBIS were 1.80, 1.75, 1.67, and 1.30, respectively. When combined with the SNP-based score, the corresponding ORs were 1.96, 1.89, 1.80, and 1.52. The corresponding AUCs were 0.66, 0.65, 0.64, and 0.57 for the risk prediction models, and 0.70, 0.69, 0.66, and 0.63 when combined with the SNP-based score. Conclusions: By combining a 77 SNP-based score with clinical models, the AUC for predicting breast cancer before age 50 years improved by & gt;20%. Impact: Our estimates of the increased performance of clinical risk prediction models from including genetic information could be used to inform targeted screening and prevention. Cancer Epidemiol Biomarkers Prev; 25(2); 359–65. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2018
    In:  Cancer Research Vol. 78, No. 13_Supplement ( 2018-07-01), p. 3314-3314
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 3314-3314
    Abstract: While most epigenetic marks are reprogrammed during early embryogenesis, some studies have reported Mendelian-like inheritance of germline DNA methylation in particular in cancer susceptibility genes. For instance, individuals with MLH1 silenced throughout the soma fit the clinical criteria for hereditary nonpolyposis colorectal cancer that is indistinguishable from the syndrome resulting from germline mutations in MLH1. Research using multiple-case breast cancer families has shown that LINE-1 and Sat2 DNA methylation levels are lower in individuals with a strong family history. Family clustering of cancer could therefore be due to epigenetic as well as genetic and shared environmental factors. We have recently identified heritable methylation marks associated with breast and/or prostate cancer susceptibility by conducting a study involving 45 Australian multi-generational families with multiple cases of breast or prostate cancer who are not known to carry genetic mutations in cancer susceptibility genes. We developed and applied a new statistical method to identify heritable methylation marks based on complex segregation analysis and identified 24 and 41 methylation marks significantly associated with breast and prostate cancer risk respectively. Several marks across VTRNA2-1, a gene located in a differentially methylated region that is involved in imprinting and shows allele-specific methylation, were associated with heritable risk of both cancer types. A proportion of all identified marks were found to be associated with cancer risk in independent nested case-control studies (ie outside of the multiple-case family setting). We are expanding these successful studies to include additional families and to estimate HRs and age-specific cumulative risks of cancer associated with these marks to enable the incorporation of this information into clinical tools for risk prediction. Citation Format: Melissa C. Southey, Jihoon E. Joo, James G. Dowty, Roger L. Milne, EE Ming Wong, Pierre-Antoine Dugué, Dallas English, John L. Hopper, David E. Goldgar, Graham G. Giles. Heritable methylation marks associated with prostate and breast cancer risk [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3314.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2005
    In:  Cancer Epidemiology, Biomarkers & Prevention Vol. 14, No. 6 ( 2005-06-01), p. 1363-1363
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 14, No. 6 ( 2005-06-01), p. 1363-1363
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2005
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 13, No. 10 ( 2007-05-15), p. 2865-2869
    Abstract: Purpose: Microsatellite instability (MSI) testing of colorectal cancer tumors is used as a screening tool to identify patients most likely to be mismatch repair (MMR) gene mutation carriers. We wanted to examine which microsatellite markers currently used to detect MSI best predict early-onset colorectal cancer caused by germ-line mutations in MMR genes. Experimental Design: Invasive primary tumors from a population-based sample of 107 cases of colorectal cancer diagnosed before age 45 years and tested for germ-line mutations in MLH1, MSH2, MSH6, and PMS2 and MMR protein expression were screened for MSI using the National Cancer Institute panel and an expanded 10-microsatellite marker panel. Results: The National Cancer Institute five-marker panel system scored 31 (29%) as NCIMSI-High, 13 (12%) as NCIMSI-Low, and 63 (59%) as NCIMS-Stable. The 10-marker panel classified 18 (17%) as 10MSI-High, 17 (16%) as 10MSI-Low, and 72 (67%) as 10MS-Stable. Of the 26 cancers that lacked the expression of at least one MMR gene, 24 (92%) were positive for some level of MSI (using either microsatellite panel). The mononucleotide repeats Bat26, Bat40, and Myb were unstable in all 10MSI-High cancers and all MLH1 and MSH2 mutation carriers (100% sensitive). Bat40 and Bat25 were unstable in all tumors of MSH6 mutation carriers (100% sensitive). Bat40 was unstable in all MMR gene mutation carriers (100% sensitive). By incorporating seven mononucleotide repeats markers into the 10-marker panel, we were able to distinguish the carriers of MSH6 mutations (all scored 10MSI-Low) from the MLH1 and MSH2 mutation carriers (all scored 10MSI-High). Conclusions: In early-onset colorectal cancer, a microsatellite panel containing a high proportion of mononuclear repeats can distinguish between tumors caused by MLH1 and MSH2 mutations from those caused by MSH6 mutations.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2007
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 3 ( 2020-02-01), p. 624-638
    Abstract: Pathogenic sequence variants (PSV) in BRCA1 or BRCA2 (BRCA1/2) are associated with increased risk and severity of prostate cancer. We evaluated whether PSVs in BRCA1/2 were associated with risk of overall prostate cancer or high grade (Gleason 8+) prostate cancer using an international sample of 65 BRCA1 and 171 BRCA2 male PSV carriers with prostate cancer, and 3,388 BRCA1 and 2,880 BRCA2 male PSV carriers without prostate cancer. PSVs in the 3′ region of BRCA2 (c.7914+) were significantly associated with elevated risk of prostate cancer compared with reference bin c.1001-c.7913 [HR = 1.78; 95% confidence interval (CI), 1.25–2.52; P = 0.001], as well as elevated risk of Gleason 8+ prostate cancer (HR = 3.11; 95% CI, 1.63–5.95; P = 0.001). c.756-c.1000 was also associated with elevated prostate cancer risk (HR = 2.83; 95% CI, 1.71–4.68; P = 0.00004) and elevated risk of Gleason 8+ prostate cancer (HR = 4.95; 95% CI, 2.12–11.54; P = 0.0002). No genotype–phenotype associations were detected for PSVs in BRCA1. These results demonstrate that specific BRCA2 PSVs may be associated with elevated risk of developing aggressive prostate cancer. Significance: Aggressive prostate cancer risk in BRCA2 mutation carriers may vary according to the specific BRCA2 mutation inherited by the at-risk individual.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 14, No. 14 ( 2008-07-15), p. 4667-4671
    Abstract: Purpose: PALB2 is a recently identified breast cancer susceptibility gene. We have previously identified in the Finnish population a PALB2 c.1592delT founder truncation mutation that is associated with an increased risk of breast cancer. In the present study, we wanted to assess in more detail the increased risk (hazard ratio, HR) and the age-specific cumulative risk (penetrance) of c.1592delT with regard to susceptibility to breast and other forms of cancer. Experimental Design: Modified segregation analyses fitted under maximum likelihood theory were used to estimate age-specific cumulative risks and HRs using the families of mutation carriers identified from a consecutive series of breast cancer cases unselected for age at onset or family history. Results: We found a substantially increased risk of breast cancer [HR, 6.1; 95% confidence interval (95% CI), 2.2-17.2; P = 0.01] equivalent to a 40% (95% CI, 17-77) breast cancer risk by age 70 years, comparable to that for carriers of mutations in BRCA2. We found marginal evidence (P = 0.06) that the HR for breast cancer decreased with age by 4.2% per year (95% CI, 0.2-8.1), from 7.5-fold at age 30 years to 2.0-fold at age 60 years. Conclusions: Our results suggest that it may be appropriate to offer PALB2 c.1592delT mutation testing to Finnish women with breast cancer, especially those with an early age at onset or a family history of breast or related cancers, and to offer carriers the option of participation in extended disease surveillance programs.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2008
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...